
Post-Quantum Anonymous Tokens
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1 Introduction

In the complex mosaic of the modern internet infrastructure, Content Delivery Networks (CDNs)
are proving to be essential facilitators, streamlining the global distribution of internet content.
With centralised control over content distribution, CDNs act as global arbiters, wielding the
authority to allow or block content requests in a bid to thwart malicious traffic. However, this
centralised control encounters a significant challenge with the advent of privacy tools such as
Tor and VPNs, which contribute to the emergence of shared IP addresses. This shared context
poses a problem, as it becomes increasingly challenging for CDNs to distinguish between legit-
imate users and potential threats. The response to this challenge has often taken the form of
CAPTCHAs, an acronym for Completely Automated Public Turing test to tell Computers and
Humans Apart. While effective in curbing malicious activities and distinguishing between human
users and automated bots, CAPTCHAs introduce a different kind of problem. Users frequently
encounter inconvenience and annoyance, forced to decipher distorted characters or solve puzzles
to access desired content. This trade-off between security and user experience highlights the need
for innovative solutions that transcend the limitations of conventional CAPTCHA mechanisms.
In this landscape, Cloudflare1, a leading player in the CDN domain, proposed a solution named
Privacy Pass [DGS+18]. This novel approach represents a paradigm shift in solving the problems
posed by CAPTCHAs, offering a streamlined and privacy-focused method for meeting the chal-
lenges of the internet. Privacy Pass introduces the concept of anonymous tokens, which serve
as cryptographic passports, enabling users to anonymously authenticate themselves without di-
vulging sensitive information. The high-level design of Privacy Pass revolves around the issuance
and validation of these anonymous tokens. During legitimate interactions, users, authenticated
through the issuance of tokens, can subsequently present these tokens to Cloudflare-protected
websites without undergoing repetitive CAPTCHA challenges. This not only speeds up access
for users, but also preserves their privacy by eliminating the need for recurring identification
processes.

From there on, several publications emerged with the goal of implementing additional exten-
sions into the protocol. Anonymous tokens with private metadata bit [KLOR20, CDV23] develop
a way of transmitting two trust signals, without the user being able to distinguish which signal
is embedded into a token. Another desirable functionality is adding public metadata to anony-
mous tokens. Public metadata facilitates context-aware interactions without revealing sensitive
information. It also allows for more efficient key-rotation. [SS22] gave the first construction of
such a scheme, with also the ability of combining both public and private metadata. Finally,
public verifiability of anonymous tokens was introduced in [SS22, BLOR22]. The primary goal
is about introducing a layer of transparency and accountability to the token verification pro-
cess. In order to provide anonymity, those constructions rely on different primitives such as
verifiable oblivious pseudo-random functions (VOPRF), algebraic message authentication codes
(MACs) and pairing-based cryptography. Those primitives rely mostly on classical, as in non
post-quantum, cryptographic mechanisms.

On another side, the impending arrival of quantum computers announces a transforma-
tive era in the realm of cryptography and privacy. Traditional cryptographic algorithms, such
as factoring-based and discrete logarithm-based cryptography, which underpin the security of
today’s communication systems, are broken by quantum computers leveraging Shor’s [Sho94]
and/or Grover’s [Gro96] algorithm. This paradigm shift poses profound implications for data pri-
vacy, as confidential information previously considered secure could be exposed. Consequently,
the cryptographic community is actively engaged in developing quantum-resistant algorithms to
strengthen digital systems against the cryptographic vulnerabilities posed by quantum comput-
ing. Currently, the National Institute of Standards and Technology (NIST) of the United States

1https://www.cloudflare.com/
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has started a process to standardise2 one or more post-quantum public-key cryptography proto-
cols. On the same topic, some research started emerging on post-quantum anonymous credentials
[BLNS23]. Anonymous credentials and anonymous tokens are strongly related, in the sense that
the former can be seen as a generalisation of the latter. In [PWFHW23], Cloudflare proposed
a post-quantum Privacy Pass through the help of post-quantum anonymous credentials. The
protocol also allows for per-client rate-limits, leveraging the power of attributes engraved in the
credentials. Although their innovative protocol achieves great performance results, it allows for
the retrieval of only 1 credential at a time. Also, we note that their implementation does not
allow proofs to be computed with zero-knowledge.

1.1 Contributions

In this work, we first formalise anonymous tokens and their security properties, unlinkability and
one-more token unforgeability. We then summarise the different classical constructions, recalling
their underlying primitives and discussing their advantages and inconveniences. We then explore
the post-quantum anonymous token schemes and explain how we can build new constructions
from other post-quantum primitives. We compare and analyse the different resulting metrics.
We then propose a new post-quantum anonymous tokens scheme MQAT, based on the hardness
of solving multivariate quadratic equations systems. Our anonymous tokens scheme is publicly
verifiable. We prove that under some assumptions, this new construction fulfills the security
properties previously defined, and discuss the intuition behind the post-quantum resistance.
Finally, we present a concrete instantiation of our new protocol, written in Go. The source code
is available online at https://github.com/sebhauri/mqat. At the moment, the token issuance
protocol takes a bit less than a second and the verification process is performed in the half of
it, which makes the construction competitive with other state-of-the-art schemes.

2 Preliminaries

2.1 Notations

Throughout this work, we will use different notations that we explain below. G is an additive
cyclic group, with generator G and prime order p. Elements of the group are usually denoted
with capital letters; lower case letters usually denote scalars in the group Zp. For an integer
n ∈ N, we denote with [n] the set {0, . . . , n− 1} of n elements. We use := for assignments and
← for outputs of probabilistic algorithms. When sampling uniformly at random an element x
from the set S we write x ←$ S. We also abuse the notation by writing x0, . . . , xn−1 ←$ S to
express the fact that we sample n elements xi, i ∈ [n], from the set S uniformly at random.
String concatenation is denoted by ||. A function µ : N→ [0, 1] is said to be negligible (denoted
µ = negl(λ)) if for all c ∈ N there exists λc ∈ N such that µ(λ) ≤ λ−c for all λ ≥ λc. We call
advantage the probability that an adversary A wins a security game Game, and it is denoted as
AdvGame

A,Params(λ) = Pr[GameAParams(λ)→ 1].

2.2 Anonymous tokens

We describe below the interface for anonymous tokens, its correctness definition as well as the
different security notions. An anonymous token scheme is composed of two phases: 1) the
issuance phase, where a client (also called user) and a server (also called issuer) get involved
in an interactive protocol and the client ends up with a (possibly several) token(s), and 2) the
redeem phase, where a client spends a token it has previously been issued and a verifier checks
its validity. There is no restriction on an issuer also being a verifier, but note that this is often
the case.

2https://csrc.nist.gov/projects/post-quantum-cryptography
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Definition 1 (Anonymous tokens). An anonymous tokens scheme AT consists of the following
algorithms:

• AT.Setup(1λ)→ cpp, the setup algorithm that takes as input the security parameter λ (in
unary form) and outputs the common public parameters cpp. All the remaining algorithms
are assumed to have the common public parameters as their first input and we will thus
sometimes omit it.

• AT.KeyGen(cpp) → (pk, sk), the key generation algorithm that takes as input the common
public parameters cpp and outputs the public key pk and the secret key (also sometimes
called signing key) sk, both belonging to the issuer.

• ⟨AT.User(pk),AT.Sign(sk)⟩ → t, the interactive token issuance protocol between the user
and the issuer. The User(·) algorithm takes as input the issuer’s public key pk and the
Sign(·) algorithm takes as input the issuer’s secret key sk. At the end of the protocol, the
issuer outputs nothing and the user outputs a tag t and a signature σ or ⊥ if it failed. The
pair t := (t, σ) is called a token. This algorithm is a 2-move interactive protocol, initiated
by the client, and can be defined by the three following algorithms:

– AT.User0(pk)→ (st, query)

– AT.Sign0(sk, query)→ resp

– AT.User1(st, pk, resp)→ (t, σ)

• AT.Verify(sk, t) → bool, the verification algorithm that takes as input the issuer’s secret
key sk, a token t and outputs a boolean value indicating if the token is valid or not.

An anonymous token scheme AT is correct if for any honestly generated token and honest veri-
fication the token verifies. In other words, let λ be the security parameter, cpp← AT.Setup(1λ)
and (pk, sk)← AT.KeyGen(cpp) then AT is correct if

Pr[AT.Verify(sk, ⟨AT.User(pk),AT.Sign(sk)⟩) = 1] = 1− negl(λ) .

Unlinkability ensures that the token issuance and the token redemption are unlinkable, meaning
that when a token is redeemed the verifier cannot link it to an issuing session better than
randomly guessing on those. Formally, the κ-unlinkability property states that if ℓ tokens were
issued but not yet redeemed, an adversary can not link the issuance session of a token when
seeing the remaining ℓ− 1 tokens in a random order with probability better than κ

ℓ .

Definition 2 (κ-unlinkability). Let UNLINK be the security game defined in Figure 1, we say
that an anonymous token scheme AT is κ-unlinkable if for any probabilistic polynomial-time
(PPT) adversary A = (A0,A1,A2) and any ℓ > 0:

AdvUNLINKA,ℓ (λ) ≤ κ

ℓ
+ negl(λ)

Unforgeability ensures that a cheating user cannot trick a verifier into accepting more tokens
than it has issued to that specific user. Put in other words, a user should not be able to forge a
valid token from the issuer. We call this property the one-more token unforgeability.

Definition 3 (One-more unforgeability). Let OMUF be the security game defined in Figure 2,
we say that an anonymous token scheme AT is one-more unforgeable if for any PPT adversary
A and any ℓ ≥ 0:

AdvOMUF
A,ℓ (λ) = negl(λ)
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Game UNLINKA
AT,ℓ(λ)

1 : Setup(1λ)→ cpp

2 : q0 := 0, q1 := 0,Q := ∅
3 : (pk, st)← A0(cpp)

4 : (st, (respi)i∈Q)← AOUser0,OUser1
1 (st)

5 : if Q = ∅ or q0 − q1 ≤ ℓ then

6 : return 0

7 : for i ∈ Q do

8 : outi ← AT.User1(sti, respi)

9 : if outi = ⊥ then return 0

10 : j ←$Q,Q := Q \ {j}
11 : ϕ←$ SQ
12 : j′ ← A2(st2, outj , (outϕ(i))i∈Q)

13 : return j′ = j

OUser0()

1 : q0 := q0 + 1

2 : (queryq0 , stq0)← AT.User0(pk)

3 : Q := Q∪ {q0}
4 : return (q0, queryq0)

OUser1(j, resp)

1 : if j /∈ Q then return ⊥
2 : (t, σ)← AT.User1(stj , resp)

3 : if σ ̸= ⊥ then

4 : Q := Q \ {j}
5 : q1 := q1 + 1

6 : return (t, σ)

Figure 1: Unlinkability security game for an anonymous token scheme AT.

Game OMUFAAT,ℓ(λ)

1 : Setup(1λ)→ cpp

2 : KeyGen(cpp)→ (pk, sk)

3 : q := 0

4 : (ti, σi)i∈[ℓ+1] ← AOSign,OVerify(cpp, pk)

5 : return q ≤ ℓ

6 : and ∀i ̸= j ∈ [ℓ + 1] ti ̸= tj

7 : and ∀i ∈ [ℓ + 1] AT.Verify(sk, (ti, σi))

OSign(query)

1 : q := q + 1

2 : return AT.Sign0(sk, query)

3 :

OVerify(t, σ)

1 : return AT.Verify(sk, (t, σ))

Figure 2: One-more unforgeability security game for an anonymous token scheme
AT.

In the next sections, we will present several classical anonymous tokens constructions and
discuss their security properties as well as their limitations. Anonymous tokens have been
initially proposed in Privacy Pass [DGS+18] that we present first. This development led to
other constructions of anonymous tokens implementing additional extensions, such as having
private/public metadata embedded into tokens or public verifiability of tokens, that we present
after. Throughout the different schemes, we simplify the token issuance to one token at a time
and stress out that this does not reduce the security of the protocols. Also, we do not completely
state the token redemption phase, but rather explain how the server checks that a token is valid.

2.2.1 Privacy Pass

The Privacy Pass protocol has been developed by Cloudflare in [DGS+18]. It is a pioneering
practical solution of anonymous tokens, which is based on a verifiable oblivious pseudo-random
function (VOPRF). An OPRF allows two parties, generally a client and a server, to compute
together a function F (k;x) = z (which is often shortened as Fk(x)), with x and k being respec-
tively the client and the server private inputs. Either party should not be able to learn any
information about the private input of the other. We say that an OPRF is verifiable when the
client can be convinced that the server did the computation correctly. To prove the latter, the
server will often send back the computation along with a non-interactive zero-knowledge (NIZK)

5



proof of the computation. As an example, let T ∈ G and k ∈ Zp be the private input of the
client and the server respectively. Then the protocol presented in Figure 3 is an OPRF that
evaluates Fk(T ) = k · T since W = r−1 ·W ′ = r−1k · T ′ = r−1kr · T = k · T .

OPRF example

Client Server

r ←$ Zp

T ′ := r · T

T ′

W ′ := k · T ′

W ′

W := r−1 ·W ′

return W

Figure 3: Example OPRF Fk(T ) = k · T .

The scheme. We present below the Privacy Pass protocol between a client and a server. Let
k ∈ Zp be the issuer’s private key with the corresponding public key K = k · G ∈ G which the
issuer committed to3, Ht(t) : {0, 1}λ → G an hash function and Π be a NIZK proof system of
discrete log equality. The issuance protocol is described in Figure 4. The user first samples a

Privacy Pass issuance protocol

Client Server

t←$ {0, 1}λ

T := Ht(t)

r ←$ Zp

T ′ := r · T

T ′

W ′ := k · T ′

π ← Π.PROVE(G,K, T ′,W ′; k)

W ′, π

if not Π.VERIFY(G,K, T ′,W ′;π) then

abort

W := r−1 ·W ′

return (t,W )

Figure 4: The interactive token issuance protocol from Privacy Pass.

random tag t that it hashes into T ∈ G. The client blinds this value T with a random value

3This prevents the server from tracking users by signing tokens with a per-user key. From now on, we assume
that each issuer in the following schemes committed to their private key.
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r, called the blinding factor, and sends this masked value to the issuer. The latter signs it,
computes a NIZK proof that it did the computation correctly and sends back the signature and
the proof to the user. Finally, the user checks the proof, unblinds the signature to obtain a
signature W on T , and stores the token t = (t,W ). As we can see, the Privacy Pass protocol
is based on the VOPRF Fk(t) = k ·Ht(t). On receiving the token (t,W ), the verifier computes
T := Ht(t) and checks that W = k · T . This anonymous token protocol is correct from the
correctness properties of both the NIZK proof and the VOPRF.

Security. The protocol proposed in [DGS+18] fulfills the two anonymous tokens security prop-
erties, unlinkability and one-more token unforgeability. The former is ensured by the help of the
blinding factor r and the VOPRF. Intuitively, as r is chosen uniformly at random in Zp by the
client, T ′ is uniformly distributed in G. Using this and the fact that the VOPRF blinds the
user input correctly, the server cannot link the issuance and redemption phases. Regarding the
latter, without going into further details, the one-more token unforgeability game related to this
construction can be reduced to the security of the El-Gamal encryption scheme. The scheme is
then 1-unforgeable.

2.2.2 Anonymous tokens with private metadata bit

[KLOR20] came with the idea of including a private metadata bit into the token. The principle
is the following: if the clients have a good reputation the server will give them a valid token
and otherwise an invalid one. Recall that anonymous tokens had as a first goal to prove the
trustworthiness of internet requests without compromising on the user’s privacy. One issue
with this solution was that if an issuer stopped providing malicious users with tokens, they
would know that they had been spotted. One could then train a machine learning model to
detect which malicious behaviour goes unnoticed and use this knowledge to still get tokens when
acting malicious. The goal of those new constructions is to encode this ”validity” into the private
metadata bit, and the user should not be able to learn whether it has received an invalid token
before it redeems the latter. This property is called the privacy of the metadata bit. It has
been chosen to restrict the private metadata to only one bit to ensure that it does not lead to
de-anonymization of tokens.

The PMBT scheme. The naive way of encoding a private metadata bit into a token is to use
the Privacy Pass protocol from [DGS+18] described above and encode the bit with the secret
key of the server: one key for valid tokens and a second one for invalid tokens. This construction
does not fulfill the privacy of the metadata bit property since the underlying primitive, the
VOPRF, is completely deterministic: when requesting a signed token, the user could always ask
for the same token and will know that it is invalid when the token it receives changes. On the
other hand, the server cannot tell that the user always asks for the same token, as the request
is blinded (recall the blinding factor r). [KLOR20] came with a construction called Private
Metadata Bit Tokens (PMBT). The high-level idea is the following: generalise the Privacy Pass
protocol to allow for randomised tokens and use two different keys for each bit respectively. We
describe below the details of the protocol.

Let H be another generator of G, ((x0, x1), (y0, y1)) ∈ Z2
p × Z2

p be the issuer’s private keys
with the corresponding public keys X0 = x0 · G + y0 · H and X1 = x1 · G + y1 · H such that
X0 ̸= X1, b be the private bit of the server, Ht, Hs be two random oracles {0, 1}∗ → G and Π
be a non-interactive zero-knowledge proof system of an OR discrete log equality. We present
the PMBT construction in Figure 5. On receiving the token (t, S,W ), the server computes
T := Ht(t) and reads the private metadata bit by checking either if W = x0 · T + y0 · S or
W = x1 · T + y1 · S.

7



PMBT issuance protocol

Client Server

t←$ {0, 1}λ

r ←$ Zq

T := Ht(t)

T ′ := r−1 · T

T ′

s←$ {0, 1}λ

S′ := Hs(T
′, s)

W ′ := xb · T ′ + yb · S′

π ← Π.PROVE(G,H,X0, X1, T
′, S′,W ′;xb, yb)

s,W ′, π

S′ := Hs(T
′, s)

if not Π.VERIFY(G,H,X0, X1, T
′, S′,W ′;π) then

abort

S := r · S′

W := r ·W ′

return (t, S,W )

Figure 5: The issuance protocol of PMBT.

Unfortunately, [KLOR20] does not directly provide a verification algorithm. Also, there is
a problem with this construction, that is, if an adversary has access to a verification oracle,
then given two tokens (t0, S0,W0) and (t1, S1,W1), if t0 = t1 then by setting t∗ := t0 = t1,
S∗ := 2S0 − S1 and W ∗ := 2W0 −W1 the token (t∗, S∗,W ∗) is valid only if the same data bit
was used to generate t0 and t1 and the adversary can use this property to win the privacy of the
private metadata bit security game. They proposed a counter-measure by stating a verification
algorithm that is secure for this kind of attack.

The ATHM scheme. [CDV23] noted the problem discussed above and tried to find a way
to mitigate the issue. To do so, they decided to change the PMBT protocol in several ways:

• Change the underlying VOPRF by an algebraic message authentication code (MAC) in
order to get rid of the former’s deterministic property.

• Change the fact that the randomness of the token is only chosen by the user.

Algebraic MACs have been introduced by [DKPW12] and then generalised in [CMZ14] to provide
a keyed-verification anonymous credentials (KVAC) scheme. Unlike other MAC constructions
that rely on pseudo-random functions, algebraic MACs rely on specific number theory properties
to provide the same level of security. We briefly recall hereafter one of the two proposed schemes
of [CMZ14], MACGGM. In what follows, let m = (m1, ...,mn) be a list of n messages in a field
Fp of prime order p. MACGGM is defined in the following way:

• The secret key x is chosen randomly in Fn+1
p

• The tag σ is computed as follows: chose U ←$ G\{0}, compute U ′ := (x0 +
∑n

i=1 ximi) ·U
and output σ := (U,U ′) ∈ G2

8



• The tag σ on message m is verified as follows: parse (U,U ′) := σ, accept if U ̸= 0 and
U ′ = (x0 +

∑n
i=1 ximi) · U

We will present only the Anonymous Tokens with Hidden Metadata bit (ATHM) construction
based on MACGGM, but a quite similar construction with MACDDH, the other algebraic MAC
proposed in [CMZ14], can easily be adapted from it. Let (x, y, z) ∈ Zp × (Z∗

p)
2 be the private

key of the server and Z = z ·G its corresponding public key, b be its private input and Π be a
simulatable non-interactive proof system. The ATHM issuance protocol is presented in Figure
6. When a token (t, P,Q) is redeemed, the server verifies that P ̸= 0, checks which b ∈ {0, 1}
fulfills the equality Q = (x + by + tz) · P and either returns the bit or aborts if there is none.

ATHM issuance protocol

Client Server

tC ←$ Zp

r ←$ Zp

T := tC · Z + r ·G

T

tS ←$ Zp

d←$ Z∗
p

U := d ·G
V := d(x ·G + by ·G + tSz ·G + T )

π ← Π.PROVE(b, d, x, y, z;U, V, tS , T, Z)

U, V, tS , π

if not Π.VERIFY(π, U, V, tS , T, Z) then

abort

if U = 0 then abort

c←$ Z∗
p

P := c · U
Q := c(V − r · U)

t = tC + tS

return (t, P,Q)

Figure 6: The issuance protocol of ATHM.

Regarding the security of the scheme, the unlinkability property is ensured thanks to the
blinding factors r and c, and also the verification of Π that checks that b is in fact just one bit.
The one-more token unforgeability is ensured by the security of MACGGM against forgeries. In
fact, the authors of [CMZ14] proved that MACGGM was existentially unforgeable under chosen
message attacks given a verification oracle in the generic group model. One should also note that
the server needs to pay attention to the double spending of a token, as the token (t, ℓ · P, ℓ ·Q)
is also valid for any ℓ ∈ Z∗

p. The privacy of the metadata bit property is ensured by the issuer
always sampling a new uniformly random value tS . Otherwise, an attacker reusing tC could do
the same attack as before and learn if the bit was the same.
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2.2.3 Anonymous Tokens with Public Metadata

Another type of anonymous tokens constructions are the ones that add public metadata to
tokens. A variant of ATHM with public metadata can be found in Appendix B1 of [CDV23].
There are also schemes that seek to find public verifiability. Those constructions could be really
helpful in settings where the verifier is different from the issuer. In such cases, the verification
algorithm from Definition 1 should be changed and take as input the issuer’s public key. [SS22]
came with those exact ideas that we present below.

ATPM. The first idea consists of including public metadata into existing anonymous token
constructions such as Privacy Pass [DGS+18] and PMBT [KLOR20]. [SS22] achieves this by
applying a key transformation on the the signing keys of the issuer: instead of using the VOPRF
Fk(t) = k ·Ht(t), they use the VOPRF Fe(t) = e ·Ht(t) with e = d + k where d = Hm(md) is
the hash of the public metadata md. We do not present those constructions as they only add
this subtlety to the protocols.

Public verifiability. As the second idea also relies on the key transformation presented above,
this construction develops an other paradigm: issuing tokens that any entity could verify given
the public key of the issuer. This new scheme is based on pairings and more specifically short
signatures introduced by [BLS01]. Pairing-based cryptography uses a pairing between two cryp-
tographic groups (often chosen as elliptic curve groups) mapping to a third one by the help of
a function e : G1 ×G2 → GT which satisfies two properties:

1. bilinearity: e(aP, bQ) = ab · e(P,Q)

2. non-degeneracy: e ̸= 1

Let ê : G1×G2 → GT be a pairing with G1, G2, GT being a generator of their respective groups
of prime order p, let Ht : {0, 1}∗ → G1 and Hm : {0, 1}∗ → Z∗

p be two hash functions, k ∈ Z∗
p

the issuer’s private key with K = k ·G2 ∈ G2 its corresponding public key and finally md be an
element of a public set of valid metadata strings. The issuing protocol for anonymous tokens
with public metadata and public verifiability is presented in Figure 7. Upon receiving the token
(t,md,W ) the verifier first computes T := Ht(t) and U := Hm(md)·G2+K and then outputs the
result of the check ê(W,U) = ê(T,G2). The protocol fulfills both one-more token unforgeability
and unlinkability.

In this section, we proposed an interface for anonymous tokens and defined the two related se-
curity properties unlinkability and one-more token unforgeability. We have seen that anonymous
tokens can be built on top of classical cryptographic primitives such as VOPRFs or algebraic
MACs and also saw that more functionalities can be added into tokens, such as private/public
metadata or public verifiability.
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The issuance protocol with public metadata and public verifiability

Client Server

d := Hm(md) d := Hm(md)

t←$ {0, 1}λ e := (d + k)−1

r ←$ Z∗
p

T := Ht(t)

T ′ := r−1 · T

T ′

W ′ := e · T ′

W ′

U := d ·G2 + K

if not ê(W ′, U) = ê(T ′, G2) then

abort

W := r ·W ′

return (t,md,W )

Figure 7: Issuing protocol for anonymous tokens with public verifiability.

3 Towards post-quantum anonymous tokens

In the following sections, we will briefly overview several post-quantum primitives that could be
useful for building secure post-quantum anonymous tokens schemes. We will then compare the
different existing post-quantum anonymous tokens constructions with some new constructions
that could be built on top of other post-quantum primitives. What differs a lot from classical
constructions is the latency that can occur due to heavy computations of post-quantum schemes
in use. Another big difference is the signature size, which can make a big difference when sending
it through high-latency networks. We try to analyse the different advantages and disadvantages
of each scheme, and which trade-off can be made to get the better option for post-quantum
anonymous tokens.

3.1 Different post-quantum primitives

3.1.1 Lattice-based problems

Lattice-based cryptography stands as a cornerstone in the ongoing quest to fortify digital secu-
rity against the impending threat posed by quantum computing. As traditional cryptographic
schemes face vulnerability to quantum algorithms, lattice-based cryptography provides a promis-
ing alternative rooted in the complexity of lattice problems. We present below the most common
used problems in lattice-based cryptography. Let R = Zq[X]/(Xn − 1) be the polynomial ring
corresponding to the set of polynomials of degree less than n with coefficients in Zq, q being a
prime number or a prime power.

M-SIS. Let d be the rank of the module M ∈ Rd, β ≪ q and m ∈ N. Given A←$Rd×m
q , find

u ∈ Rm such that ||u|| ≤ β and Au = 0 mod q.

M-LWE. Let d be the rank of the module M ∈ Rd and m ∈ N, let A←$Rm×d
q , s←$Rd and

e ←$ Rm, and set b := As + e mod q. The goal of the M-LWE problem is to distinguish the

11



pair (A,b) from a uniformly random pair chosen in Rm×d
q ×Rm

q .

mat-NTRU. Given integers m, p, q, β with gcd(p, q) = 1, the goal of the mat-NTRU problem
is to distinguish between a random matrix A ←$ Zm×m

q and B := p−1G−1F mod q, for some
F ←$ {0,±1, ...,±β}n×n and some G←$ {0,±1, ...,±β}n×n ∩ (Zn×n

q )∗.

These lattice problems are believed to be hard because no polynomial-time algorithms are
known for solving them in general. The hardness of lattice problems forms the basis for the
security of lattice-based cryptographic schemes, which are being explored as alternatives to
traditional cryptographic systems like RSA and ECC (Elliptic Curve Cryptography).

3.1.2 CRYSTALS Dilithium

CRYSTALS Dilithium [DKL+18] is a post-quantum digital signature scheme based on the hard-
ness of the M-LWE problem. Let (s1, s2) ∈ Rℓ × Rk be the Dilithium private key with (A, t)
the corresponding public key such that t = As1 + s2. Let v be a vector over R, the functions
HighBits(v) and LowBits(v) decompose v uniquely as v = HighBits(v) · 2γ2 + LowBits(v) such
that −γ2 < LowBits(v) ≤ γ2 for some γ2. The (simplified) Dilithium authentication scheme is
defined by the following procedure:

1. The client samples a random y←$Rℓ and sends w1 = HighBits(y).

2. The verifier samples c←$R and sends it back.

3. The client sends z = y + c · s1.

4. The verifier compute w′
1 = HighBits(Az− ct) and accepts if w1 = w′

1.

By making the previous process non-interactive with c = H(A||t||M ||w1) for some hash function
H and message M , we obtain what is called a Dilithium signature.

3.1.3 The ISIS problem ([BLNS23])

The Inhomogenous Shortest Integer Solution is a new lattice-based assumption defined over the
following problem: given a random matrix A ∈ Zm×n

p , a function f : [N ] → Zn
p and an access

to an oracle who chooses a random x ∈ [N ] and outputs it with a small vector s such that
As = f(x), find another tuple (x′, s′) such that s′ is small and As′ = f(x′). This lattice-based
problem allows to create a blind signature scheme: we sign a message x with the pre-image s if
f(·) is modelled as a random oracle. Also, one can give very efficient zero-knowledge proofs of
the ISISf problem.

3.1.4 Isogenies

Isogeny-based cryptography was introduced by Couveignes [Cou06], Rostostev and Stolbunov
[RS06]. It relies on the problem of computing an isogeny between two given elliptic curves. An
isogeny is a surjective morphism between two elliptic curves. For cryptographic applications we
consider separable isogenies only, which are fully determined by their kernels. Several variants of
this foundational problem appear in the literature and have led to a wide range of cryptographic
constructions. We distinguish two general line of works, one based on SIDH [JDF11] and its
variants (this includes the line of work that offers countermeasures to the recent SIDH attacks
[CD23, MMP+23, Rob23]), and the other one based on CSIDH [CLM+18] and similar schemes.
They both led to the design of a variety of cryptographic primitives, which we will explore later
on in the context of VOPRFs (see Section 3.3.1). The main appeal of isogeny-based cryptography
resides in the compactness of its primitives which are usually order of magnitudes smaller than
other post-quantum primitives, at the cost of being significantly less efficient.
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3.1.5 Multivariate equations systems

Multivariate cryptography has gained a lot of interest in post-quantum cryptography due to its
potential resistance to quantum attacks, efficient implementation on constrained devices, and
its suitability for post-quantum cryptographic scenarios. It is based on the hardness of solving
the MQ problem and its variants. We recall hereafter the basics of multivariate cryptography.

Definition 4 (The MQ function [SSH11]). We denote byMQ(n,m,Fq) a family of functions{
F(x) = (f1(x), . . . , fm(x))

fℓ(x) =
∑

i,j αℓ,i,jxixj +
∑

i βℓ,ixi,

αℓ,i,j , βℓ,i ∈ Fq, ℓ = 1, . . . ,m

}
where x = (x1, . . . , xn) ∈ Fn

q and constant terms have been omitted for simplicity without any
security loss.

With such a family of functions, we can define the MQ problem as the following:

Definition 5 (MQ problem). Given F ∈MQ(n,m,Fq), find a vector x such that F(x) = 0.

This problem is proven to be NP-hard and thus its interest in post-quantum cryptography has
grown. It is also believed that solving random instances of theMQ problem is hard. We define
below the notion of intractability for the MQ function ([SSH11] Definition 1).

Definition 6 (Intractability). For polynomially bounded functions n = n(λ), m = m(λ) and
q = q(λ), MQ(n,m,Fq) is intractable if there is no PPT algorithm that takes as input (F ,v),
with F ←$MQ(n,m,Fq), s←$ Fn

q and v := F(s), and outputs s′ ∈ Fn
q such that F(s′) = v with

non-negligible probability.

Several public key cryptosystems (PKC) have been built on variants of this problem, and we
present some of them below.

Oil and vinegar. The Oil and Vinegar (OV) digital signature scheme has first been introduced
in [Pat97]. The principle is simple and explained in this paragraph. A multivariate quadratic
equation system can be seen as a map F = (f1(x), . . . , fo(x)) : Fn

q → Fo
q ∈ MQ(n, o,Fq). Let

n = o+ v and define the index sets V = {0, . . . , v− 1} and O = {v, . . . , n− 1} referred to as the
Vinegar set and the Oil set respectively, then each polynomial fℓ can be written as

fℓ(x) =
∑
j,k∈O

α
(ℓ)
j,kxjxk +

∑
j,k∈V

β
(ℓ)
j,kxjxk +

∑
j∈O,k∈V

γ
(ℓ)
j,kxjxk + Lℓ(x)

where Lℓ(x) contains the linear coefficients of fℓ. By carefully choosing the polynomials such
that the first term of the equation always vanishes, then the map F is easily invertible: we fix
the v variables xi, i ∈ V, and solve a system of o linear equations in o variables xi, i ∈ O, by
using Gaussian elimination. Such polynomials are called OV polynomials and F an OV map.
With this in mind, one can define a digital signature scheme. The signer generates an OV map
F (also called the central map) and a random invertible linear map T : Fn

q → Fn
q which it uses

as the private key. The public key is the map P : Fn
q → Fo

q = F ◦ T . To get a signature on
a message w ∈ Fo

q, the signer computes a preimage y ∈ Fn
q of w under the central map F

and outputs the signature z := T −1(y). To check a signature z ∈ Fn
q on a message w ∈ Fo

q,
the verifier computes w′ := P(z) and checks that w = w′. The balanced Oil and Vinegar
(o = v) digital signature scheme has been broken by the Kipnis-Shamir attack in [KS98]. An
unbalanced (v > o) version has been proposed in [KPG99]. It is believed that the Unbalanced
Oil and Vinegar (UOV) digital signature scheme has the best compromise between security and
efficiency when v = 2o, which means a number of variables three time as large as the number
of equations. A modern version of UOV4 has been submitted to the NIST additional call for
post-quantum digital signature schemes standardisation process5.

4https://www.uovsig.org/
5https://csrc.nist.gov/projects/pqc-dig-sig
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Rainbow. The Rainbow digital signature scheme has been proposed in [DS05]. It can be seen
as a multi-layer version of UOV. The private key is composed of an easily invertible quadratic
map F : Fn

q → Fm
q and two invertible linear maps S : Fm

q → Fm
q and T : Fn

q → Fn
q and the public

key is the quadratic map P = S ◦ F ◦ T : Fn
q → Fm

q . To sign a message w ∈ Fm
q , one computes

recursively x := S−1(w), y := F−1(x) and z := T −1(y). The signature is then the vector
z ∈ Fn

q . To check the authenticity of a signature z on message w, one computes w′ := P(z)
and checks if w = w′. Rainbow was one of the 3 finalists to the NIST call for post-quantum
digital signature standardisation process but unfortunately the protocol has lately been broken
by [Beu22], in a attack where the secret key can be recovered after on average 53 hours using a
standard laptop.

A 5-pass identification scheme. [SSH11] proposed two identification schemes based on the
hardness of solving theMQ problem; a 3-pass and a 5-pass scheme. We quickly recall hereafter
the 5-pass identification scheme and its security notions. The scheme is based on the following
principle: for any quadratic map F ∈MQ(n,m,Fq) its polar form is defined as

G(x,y) = F(x + y)−F(x)−F(y).

G is a bilinear function. The idea is to prove the knowledge of a preimage s ∈ Fn
q (the secret

key) of the vector v := F(s) ∈ Fm
q (the public key) under the multivariate quadratic map

F ∈ MQ(n,m,Fq), in a zero-knowledge way. To do so, the prover splits the secret key as
s = r0 + r1, the public key as F(s) = F(r0 + r1) = F(r0) +F(r1) + G(r0, r1) and proves that it
knows a tuple (r0, r1, t0, t1, e0, e1) such that

(t0, e0) = (αr0 − t1, αF(r0)− e1) (1)

G(t0, r1) + e0 = α(v −F(r1))− G(t1, r1)− e1 (2)

where α ∈ Fq is chosen by the verifier, αr0 = t0 + t1 and αF(r0) = e0 + e1. The protocol
goes as follows: the prover first samples r0, t0, e0 in their respective domains; it then computes
r1 := s−r0 and makes two commitments c0 := Com(r0, t0, e0) and c1 := Com(r1,G(t0, r1)+e0),
with a commitment scheme Com, that it sends to the verifier; the latter responds with a random
value α←$ Fq with which the prover computes values t1 and e1 that it sends back to the verifier;
finally the verifier queries the prover by picking a challenge b ←$ {0, 1} to which the prover
responds with rb; if b = 0 the verifier checks that c0 = Com(r0, αr0 − t1, αF(r0) − e1) and
otherwise that c1 = Com(r1, α(v − F(r1) − G(t1, r1) − e1). [SSH11] proved two properties as
theorems that we state hereafter without giving the proofs.

Theorem 1. The 5-pass protocol is statistically zero-knowledge when the commitment scheme
Com is statistically hiding.

Theorem 2. The 5-pass protocol is an argument of knowledge for the relation RF = {(v,x) ∈
Fm
q × Fn

q : v = F(x)} with knowledge error 1
2 + 1

2q when the commitment scheme Com is
computationally binding.

MQDSS. The MQDSS digital signature protocol has been proposed in [CHR+16]. It is based
on a non-interactive version of the 5-pass identification system described above. We outline
below how the scheme works. The protocol assumes the existence of an hash function H :
{0, 1}∗ → {0, 1}λ and two pseudo-random number generators H1 : {0, 1}2λ → Fr

q and H2 :

{0, 1}2λ → {0, 1}r.

Key generation: The secret key consists of a vector s ∈ Fn
q and the public key of a multivariate

quadratic system F ∈MQ(n,m,Fq) and the vector v = F(s) ∈ Fm
q .
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Signature generation: To sign a message m ∈ {0, 1}∗, the signer first computes the message
dependent values R := H(s||m) and D := H(R||m). It then performs r rounds of the non-
interactive version of the 5-pass identification scheme described in [SSH11]. To sample the values
α0, . . . , αr−1 the signer uses the pseudo-random number generator H1 with input h1 = (D,σ0)

where σ0 = (c
(0)
0 ||c

(0)
1 ||c

(1)
0 ||c

(1)
1 || . . . ||c

(r−1)
0 ||c(r−1)

1 ) is the concatenation of the 2r commitments
needed for the r rounds of the 5-pass identification scheme. To sample the values b0, . . . , br−1

the signer uses the pseudo-random number generator H2 with input h2 = (h1, σ1) with σ1 =

(t
(0)
1 ||e

(0)
1 || . . . ||t

(r−1)
1 ||e(r−1)

1 ), the concatenation of the r prover’s second messages in the 5-pass

identification scheme. The signature is the tuple σ = (R, σ0, σ1, σ2) where σ2 = (r
(0)
b0

, . . . , r
(r−1)
br−1

).

Signature verification: To check that a signature σ is valid for message m, the verifier first
computes D = H(R||m). It then composes h1 and h2 to derive the challenges αi, bi, i ∈ [r].
Finally, for each round i, the verifier checks

if bi = 0, c
(i)
0 = Com(ri, αri − t

(i)
1 , αF(ri)− e

(i)
1 )

if bi = 1, c
(i)
1 = Com(ri, α(v −F(ri)− G(t

(i)
1 , ri)− e

(i)
1 )

The signature is valid if all checks pass. To chose the right r for a security of λ bits, the number
of rounds is computed as the smallest r such that

1

Pr[N ]
+ 2r−N ≥ 2λ, ∀ 0 ≤ N ≤ r

where

Pr[N ] =
r∑

i=N

(
1

q

)i(q − 1

q

)r−i(r
i

)
.

The main security property that is proven in [CHR+16] is the existential unforgeability under
adaptive chosen message attacks (EU-CMA).

Theorem 3 (EU-CMA security). IfMQ(n,m,Fq) is intractable, if the hash functions H,H1,H2

are modelled as random oracles and if Com is computationally binding and hiding, then MQDSS
is EU-CMA-secure.

Note that MQDSS made it to the second submission round of the NIST call for post-quantum
digital signature scheme standardisation process.

Having exposed post-quantum hard problems, our focus now shifts to the exploration of
various candidate constructions for anonymous tokens. These constructions derive their foun-
dations from the aforementioned post-quantum challenges, paving the way for a comprehensive
examination of possible anonymous token constructions.

3.2 Post-quantum anonymous credentials schemes

An anonymous credential scheme can easily be adapted to form an anonymous token scheme:
the client requests a new credential as a token that it can only redeem once. Lately, [BLNS23]
and [PWFHW23] came with some new constructions for a post-quantum anonymous credential
scheme that we will briefly recall in the next sections. The former is based on the ISISf problem
as the latter is based on the CRYSTALS Dilithium signature scheme. Both described some
metrics, that we will also recall along the way, where sig denotes the signature size, trans
denotes the transcript size of the issuing protocol, prover denotes the time for a user to prove
the validity of a token (in ms) and finally verifier denotes the time for a verifier to check the
validity of a token (in ms). We use a ”-” when the metric is not available.
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3.2.1 Post-quantum Privacy Pass

[PWFHW23] defines a post-quantum version of Privacy Pass. It is based on zkDilithium6,
a STARK7-friendly version of Dilithium2 which is currently in a standardisation process by
NIST for becoming the standard post-quantum digital signature algorithm. The principle is the
following:

• The client sends a commitment com of the attributes (a1, . . . , ak) to the issuer. Those
attributes are used to include a nonce, timestamps, and the number of times the client
used a token in the one day window8.

• The issuer produces a signature σ on the commitment and sends it back to the user.

• To redeem the token, the user provides a zero-knowledge non-interactive argument of
knowledge (zkNIAoK) of a signature σ on a commitment com and an opening of this
commitment r to a set of k attributes (a1, ..., ak).

The claim is that if all the algorithms used during this process are post-quantum resistant, then
the scheme is post-quantum resistant. The protocol issues only one token at a time; this is
because the token is multi-use per origin: each time a token is redeemed to an origin, the origin
sends back a new valid token for the next use. They proposed three different implementations,
one which is time-optimised, one which is size-optimised and a balanced one. We present their
different metrics in Table 1.

scheme tokens λ sig trans prover verifier

[PWFHW23]
better size

1 115 85.6 kB 2.4 kB 4882 19.8

[PWFHW23]
balanced

1 115 112,3 kB 2.4 kB 660 22

[PWFHW23]
better time

1 115 173.3 kB 2.4 kB 304 31

Table 1: Metrics for the Post-quantum Privacy Pass protocol.

We also recall that their implementation does not currently support computing proofs with
zero-knowledge as the library they are using did not permit it at the time of the publication, but
they stated that this should only add little overheads. Also the prover and verifier’s time are
mainly due to the zero-knowledge argument of knowledge used to prove knowledge of a token.

3.2.2 Practical anonymous credentials from lattices

[BLNS23] develops a post-quantum anonymous credential scheme that is based on lattices, and
particularly the ISISf problem. We give below a very high-level overview of the scheme. First,
the signer has to create its public and private key. To do so, it samples a random matrix A and
a trapdoor which allows him to sample s such that As = t for any t ∈ Zn

p . It finally creates
two matrices B1, B2 and sets its public key to (A,B1, B2, f) and its private key to the trapdoor
for matrix A. When the user wants a signature on a message m, it samples a random vector r,
computes c := B1m + B2r and generates a proof that m and r are small and that c has been
computed correctly. It sends c and the proof to the signer, who checks the proof, generates a
tag x ∈ [N ] and uses the trapdoor to create s such that As = f(x) + c. The signature is the

6https://github.com/guruvamsi-policharla/zkdilithium
7STARK stands for Scalable Transparent ARgument of Knowledge.
8Actually, this is three different attributes, with one in the 5 minutes window, one in the one hour window

and one in the one day window, all respective to when the last time the token was (re)issued
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tuple (s, x). To prove that it has a valid signature, the client reveals m and a zero-knowledge
proof that the above equation is satisfied.

The schemes in [BLNS23] also issues one token at a time and can be used in the same
way presented before for multi-use; recall that the current construction works for 8 credential
attributes. They proposed two different constructions, one which is just based on the NTRU-
ISISf assumption and the other based on the Int-NTRU-ISISf assumption, which is a reduction
of the former and where it is assumed that it is as hard. We summarise the different metrics
they obtained in Table 2.

scheme tokens λ sig trans prover verifier

[BLNS23]
NTRU-ISISf

1 128 243 kB 473 kB - -

[BLNS23] Int-
NTRU-ISISf

1 128 62 kB 107 kB - -

Table 2: Metrics for the AnonCred protocol. No implementation has been made and
thus we couldn’t report the prover and verifier metrics.

The first one does not look appealing due to the different sizes but the second one could
be investigated further. As a matter of fact, size is not the only factor here but the timings of
the proofs are also very important. Unfortunately, no implementation has been made by the
authors and we thus have no point of comparison for the timings.

3.3 New post-quantum anonymous tokens constructions

A lot of research has been made in post-quantum VOPRFs. An anonymous token scheme can
easily be built from such a primitive: one could sample a random tag in {0, 1}λ, hash it into the
preimage set of the VOPRF construction, use the VOPRF to get a signature on the tag and then
send the tag along with the signature to redeem the token. The verifiability is not directly given
from the nature of the different schemes, but could be added with the help of zero-knowledge
proofs. However we note that those proofs could add a lot of overhead for the sizes of the
signatures and transcripts. We can also build post-quantum anonymous token schemes from
other post-quantum primitives such as blind signatures and we also study this point further.

3.3.1 Post-quantum VOPRFs

[Bas23, dSGP23, ADDG23] all define post-quantum VOPRFs. The first two schemes are based
on isogenies and the last one on homomorphic encryption on lattices. [Bas23] OPRF is inspired
from the 2020 isogeny-based OPRF from Boneh, Kogan and Woo [BKW20] and is using M-SIDH
[FMP23] as a building block. [dSGP23] builds an OPRF from group-action based cryptography,
utilising new proof techniques they develop. Their construction can be instantiated with isoge-
nies by using CSIDH [CLM+18]. We state their different metrics in Table 3 keeping the same
labels as before but where the verifier’s time replaced with the issuer’s time and each metric is
for the retrieval of one token.

The principal advantages of those post-quantum VOPRFs schemes is that they have a really
small signature size. The verification would be only to send the token and the signature and
verify the PRF on the server side which does not add a lot of overhead. Their main disadvantage
is that they take a lot of bandwidth during the issuing phase. [ADDG23] would be a good
candidate if it did not have to send a public key of 4077.8 MB with each issuing request. The
last one [dSGP23] is also a good candidate and could be taken further to analyse the different
running times.
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scheme λ sig trans user issuer

[Bas23] 128 32 B 8.7 MB - -

[ADDG23]∗ 128 32 B 4078,44 MB 256,1 ms 123ms∗∗

[ADDG23]∗

64-queries
amortised

128 2048 B 4078,41 MB 256,1 ms 123ms∗∗

[dSGP23] λ - (2λ + 17
2 ) log p + 4λ - -

Table 3: Comparison table for post-quantum VOPRFs primitives. No implementa-
tion has been made for [Bas23] and [dSGP23]; we thus do not have the metrics.
∗ Implementation has not been made with verifiability so timings might be wrong.
∗∗Estimated.

3.3.2 Post-quantum blind signatures

An anonymous token construction can easily be derived from a blind signature scheme: we first
hash a tag t ∈ {0, 1}λ into the message domain of the blind signature scheme; the issuing phase
is the interactive signing phase and a token is the pair (t, σ) where σ is the blind signature;
to verify the validity of a token the verifier hashes the tag t into the message domain and
checks the blind signature on this message. [PSM17] proposed a blind signature scheme MBSS
based on the hardness of the MQ problem, using the Rainbow and MQDSS building blocks.
The protocol works as follows: let P : Fn

q → Fm
q and R : Fn

q → Fn
q be two multivariate

quadratic systems, with P being a Rainbow public key as described above and R being a random
multivariate quadratic system. To get a blind signature for a message w ∈ Fm, the user samples
a random value z∗ ←$ Fm

q , computes w̃ := w−R(z∗) and sends w̃ to be signed. The issuer then
returns a Rainbow signature z on w̃ and the user ends up with a solution (z, z∗) of the system
P(x1) + R(x2) = w. It can then prove the knowledge of this solution using MQDSS. Using
the hash-and-sign paradigm described before, we can easily turn this blind signature protocol
into an anonymous token scheme. The metrics of the blind signature scheme are summarised
in Table 4. Their implementation was made with Sage and is thus not optimised. They claim
that as their bottleneck is on the MQDSS, an optimised implementation as in [CHR+16] could
drop the user and verifier timings by several orders of magnitude ([CHR+16] achieves MQDSS
signatures of 256 bits security in 6.79 ms).

scheme tokens λ sig trans user issuer verifier

[PSM17] 1 128 28.5 kB - 7760 19 5505

Table 4: MBSS metrics. The transcript size is equal to the sum of the byte-length
of the encodings of vectors w̃ ∈ Fm

q and z ∈ Fn
q .

As previously stated, the Rainbow post-quantum digital signature scheme has been unfortu-
nately proven insecure, and thus an anonymous token construction can not be built on top of
this blind signature scheme.

4 Multivariate Quadratic Anonymous Tokens

In this section, we present a new construction for post-quantum anonymous tokens based on
the hardness of solving multivariate quadratic equation systems. The idea is pretty simple: we
propose a modification of MBSS, which uses UOV instead of Rainbow as the first part of the
signature, and use the transformation described in the previous section to get an anonymous
token scheme. We have chosen to go further with this construction, as it could have significant
results when optimised. After having presented this new construction, we prove that it conforms
to the unlinkability and one-more unforgeability properties defined in Section 2.2. We then
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discuss the choice of the parameters that can lead to post-quantum security.

4.1 The scheme

We call our new post-quantum anonymous token construction MQAT for Multivariate Quadratic
Anonymous Tokens.

Setup Algorithm. The Setup(·) procedure is in charge of generating the scheme parameters
depending on the security parameter λ. They are composed of:

• a finite field Fq, where q is either a prime number or a prime power,

• integers m,n ∈ N such that the security level of theMQ instanceMQ(m,n,Fq) is greater
or equal to λ,

• r ∈ N, the numbers of rounds for MQDSS to have a security of λ bits (see Section 3.1.5),

• cryptographic hash functions

– H : {0, 1}∗ → {0, 1}2λ,

– Hm : {0, 1}λ × {0, 1}λ → Fm
q ,

– H1 : {0, 1}λ × {0, 1}λ → Fr
q and

– H2 : {0, 1}λ × {0, 1}λ × (Fm+n
q )r → {0, 1}r,

• two string commitment functions

– Com0 : Fn
q × Fn

q × Fm
q → {0, 1}2λ and

– Com1 : Fn
q × Fm

q → {0, 1}2λ.

Key Generation. The signer generates an UOV public/secret key pair, composed of an in-
vertible linear transformation T : Fn

q → Fn
q and a set of m OV-polynomials F = (f (1), . . . , f (m))

in n variables, and a random multivariate quadratic system R : Fm
q → Fm

q . The secret key
consists of the pair (F , T ) and the public key is composed of the two multivariate quadratic
systems P = F ◦ T and R.

Token issuance. The interactive token issuance protocol is depicted in Figure 8. The user
first samples a random tag t ∈ {0, 1}2λ that it uses to generate w ← Hm(t) ∈ Fm

q . It then
samples a random element z∗ ←$ Fm

q , computes w∗ := R(z∗) and sends w̃ := w − w∗ to the
server. The signer sends back the UOV signature z of w̃, which in fact is the preimage of w̃
under the system P. The user verifies the signature, checks that P(z) +R(z∗) = w and aborts
if the check does not pass. It finally computes an MQDSS signature σ for the message w on the
system P̄ = P +R : Fm+n

q → Fm
q , with G being the polar form of P̄. By doing this, the user

proves that it knows a solution (z, z∗) of the multivariate equations system P(x1) +R(x2) = w
without revealing z and z∗. Finally, the user stores the token t = (t, σ).
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The token issuance protocol

User Issuer

t←$ {0, 1}2λ

w← Hm(t)

z∗ ←$ Fm
q

w∗ := R(z∗)

w̃ := w −w∗

w̃

Find u ∈ Fn
q such that F(u) = w̃

z := T −1(u)

z

if P(z) +R(z∗) ̸= w then

abort

C ← H(P||w)

D ← H(C||w)

r
(0)
0 , . . . , r

(r−1)
0 ←$ Fm+n

q

t
(0)
0 , . . . , t

(r−1)
0 ←$ Fm+n

q

e
(0)
0 , . . . , e

(r−1)
0 ←$ Fm

q

r
(i)
1 := (z||z∗)− r

(i)
0

c
(i)
0 := Com0(r

(i)
0 , t

(i)
0 , e

(i)
0 )

c
(i)
1 := Com1(r

(i)
1 ,G(t

(i)
0 , r

(i)
1 ) + e

(i)
0 )

σ0 := H(c
(0)
0 ||c

(0)
1 || . . . ||c

(r−1)
0 ||c(r−1)

1 )

α0, . . . , αr−1 ← H1(D, σ0)

t
(i)
1 := αi · r(i)0 − t

(i)
0

e
(i)
1 := αi · P̄(r

(i)
0 )− e

(i)
0

σ1 := (t
(0)
1 , e

(0)
1 , . . . , t

(r−1)
1 , e

(r−1)
1 )

b0, . . . , br−1 ← H2(D, σ0, σ1)

σ2 := (r
(0)
b0

, . . . , r
(r−1)
br−1

, c
(0)
1−b0

, . . . , c
(r−1)
1−br−1

)

σ := (C, σ0, σ1, σ2)

return (t, σ)

Figure 8: The issuance protocol for MQAT, our new anonymous tokens scheme.

Verification algorithm. The token verification protocol is depicted in Figure 9. On receiving
the token t = (t, σ), the verifier computes w ← Hm(t), checks that the MQDSS signature σ on
w is valid and outputs the result as a boolean value.
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MQAT.Verify(pk = (P,R), t = (t, σ))

1 : (C, σ0, σ1, σ2) := σ

2 : P̄ = P +R
3 : w← Hm(t)

4 : D ← H(C||w)

5 : α0, . . . , αr−1 ← H1(D, σ0)

6 : b0, . . . , br−1 ← H2(D, σ0, σ1)

7 : for i = 0, . . . , r − 1 do

8 : Extract (t
(i)
1 , e

(i)
1 ) from σ1 and ri from σ2

9 : if bi = 0 then

10 : c
(i)
0 := Com(ri, αri − t

(i)
1 , αP̄(ri)− e

(i)
1 )

11 : if bi = 1 then

12 : c
(i)
1 := Com(ri, α(w − P̄(ri))− G(t

(i)
1 , ri)− e

(i)
1 )

13 : σ′
0 := H(c

(0)
0 ||c

(0)
1 || . . . ||c

(r−1)
0 ||c(r−1)

1 )

14 : return σ0 = σ′
0

Figure 9: The verification algorithm of MQAT.

Notes. To reduce the length of the signature, we use techniques mentioned in [CHR+16]
and [PSM17]. Instead of including the concatenation of the 2r commitments directly into the

signature, we set σ0 := H(c
(0)
0 ||c

(0)
1 || . . . ||c

(r−1)
0 ||c(r−1)

1 ). This comes with the overhead of having

to transmit the commitments (c
(0)
1−b0

, . . . , c
(r−1)
1−br−1

) in σ2, and the verifier having to recompute the

commitments (c
(0)
b0

, . . . , c
(r−1)
br−1

). We thus saved having to send r commitments.
Another note is that the private key of the issuer is never used in the verification procedure.
This then makes the protocol publicly verifiable.

The proof for correctness follows the one from [PSM17]. We split the proof in two parts.
The first step shows that the user rightfully ends up with a solution (z, z∗) of the system
P(x1) +R(x2) = w. This is true since by definition P(z) = w̃, R(z∗) = w∗ and w = w̃ + w∗.
The second step shows by the correctness of the MQDSS scheme defined in [CHR+16] that the
user knows a the solution of the system P̄(x) = P(x1) +R(x2).

4.2 Security

In this section, we discuss and prove the unlinkability and one-more unforgeability properties of
our new scheme MQAT. We then analyse the notion of post-quantum security for the primitives
used in the construction.

Unlinkability. In the UNLINK game, the adversary needs to find which query w̃i is linked to
the output token (t, σ)j selected randomly. The signature σ does not contain any information
about the solution (z, z∗) of the system P(x1) +R(x2) = w due to the zero-knowledge property
of MQDSS. Therefore, the adversary has no choice but to link a query w̃i to t as σ does not
give any advantage. We know that w̃ = w −R(z∗) for a vector z∗ ←$ Fm

q and w = Hm(T ). As
a result, the problem reduces to finding this z∗ for the queries w̃i made by the adversary in A1.
As the MQ problem is intractable and as z∗ is uniformly chosen in Fm

q , then the best solution
for the adversary is no better than guessing on the w̃i’s, which corresponds to the 1-unlinkability
property.
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Theorem 4 (MQAT is 1-unlinkable). MQAT is 1-unlinkable if

• MQ(n,m,Fq) is intractable,

• Com0 and Com1 are statistically hiding commitment schemes,

• H,Hm,H1 and H2 are modelled as random oracles,

• and the distribution of R(x) for x←$ Fm
q is computationally indistinguishable from uniform

in Fm
q .

Proof. Let Game 0 be the UNLINK game as in Definition 2. Let Game 1 be the UNLINK
game as Game 0 but where the functions AT.User0(·) and AT.User1(·) are replaced by their
instantiated algorithms MQAT.User0(·) and MQAT.User1(·) as defined in Figure 8. As this is the
same game, the advantage of A does not change. So we have that

AdvUNLINKA,ℓ (λ) = AdvGame1
A,ℓ (λ).

Let Game 2 be the same as Game 1 but where w∗ in MQAT.User0() is sampled uniformly
at random in Fm

q rather by being computed with R(·), as by assumption the output of R(x) is
uniformly distributed in Fm

q for any x ∈ Fm
q . We can then also remove the sampling of z∗. Thus

the advantage of the adversary after A1 is bounded by the capability of a distinguisher D to
distinguish between a random value and the output of R(·), which is by assumption negligible.
Hence

AdvGame1
A,ℓ (λ) ≤ AdvGame2

A,ℓ (λ) + Pr[D wins].

Let Game 3 be defined as Game 2 but instead of sampling w∗ we directly sample w̃ as it
has the same distribution as w∗ since w∗ is sampled uniformly at random and perfectly hides
w. At this point, the adversary has no way to link t and w̃, as they are completely independent.
Thus,

AdvGame3
A,ℓ (λ) = AdvGame2

A,ℓ (λ).

Let Game 4 be as Game 3 but where the procedure MQAT.User1(·) is replaced by the
MQDSS zero-knowledge simulator M. As by assumption the commitment schemes are statisti-
cally hiding, the underlying 5-pass identification scheme is statistically zero-knowledge ([SSH11],
Section 4, Theorem 4) and thus so is MQDSS. As a consequence, the capability of an adver-
sary B to distinguish between an honest MQDSS signature and a simulated one, which is also
negligible, is added to the advantage. Hence,

AdvGame3
A,ℓ (λ) ≤ AdvGame4

A,ℓ (λ) + Pr[B wins].

At this point, the view of the adversary in Game 4 is composed of ℓ random w̃i and ℓ random
(tj , σj) all independent of the w̃i’s, and hence the best strategy for an adversary of Game 4 is
to chose an index j′ ←$ [ℓ] uniformly at random. So

AdvGame4
A,ℓ (λ) =

1

ℓ
.

Putting everything together, we have that

AdvUNLINKA,ℓ (λ) ≤ 1

ℓ
+ Pr[D wins] + Pr[B wins]

=
1

ℓ
+ negl(λ)

as by assumptions the last two terms on the right-hand side are negligible. We can then conclude
that MQAT is 1-unlinkable.
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Unforgeability. In the OMUF game, the adversary needs to provide ℓ + 1 valid signatures,
having access to ℓ queries to a signing oracle. This security notion relies heavily on the unforge-
ability properties of both UOV and MQDSS, as being able to forge a signature of either scheme,
an adversary could easily produce valid tokens.

Theorem 5 (MQAT is one-more unforgeable). MQAT is one-more token unforgeable if

• MQ(n,m,Fq) is intractable,

• Com0 and Com1 are computationally binding commitment schemes,

• MQDSS is EU-CMA-secure,

• finding a solution (z, z∗) of the multivariate quadratic equation system P(x1) +R(x2) = 0
for a randomly chosen quadratic map R : Fm

q → Fm
q and an UOV public key P : Fn

q → Fm
q

is a hard problem,

• UOV is secure,

• and the distribution of R(x) for x←$ Fm
q is computationally indistinguishable from uniform

in Fm
q .

Proof. Consider an adversary A against OMUF of MQAT. We present by a sequence of game-
hopping arguments that an adversary winning the OMUF game logically implies that there
exist an adversary that can find a solution (z, z∗) of the multivariate quadratic equation system
P(x1) +R(x2) = 0 for a randomly chosen quadratic map R : Fm

q → Fm
q and an UOV public key

P : Fn
q → Fm

q , which is a hard problem. Along the proof, we will denote by Ai an adversary
against Game i.

Let Game 0 be the OMUF game as in Definition 3, instantiated with the algorithms of MQAT
defined in Section 4.1. Let Game 1 be the OMUF game, but with the Verify(·) procedure being
replaced by its interactive counterpart, as defined in [SSH11], and the random oracles that A0

uses are programmed to respond the challenges that A1 receives from the challenger. Clearly,
A0 winning implies A1 winning and thus

AdvOMUF
A,ℓ (λ) ≤ AdvGame1

A1,ℓ
(λ).

Let Game 2 be the OMUF game where the zero-knowledge property in the verification
procedure is dropped; that is the adversary directly sends (z, z∗) to the challenger. A2 uses the
knowledge extractor E of the 5-pass zero-knowledge identification scheme to recover (z, z∗) from
the outputs of A1 and wins the game. Recall from Theorem 2 that the extractor E outputs a
solution with probability q+1

2q , and that MQDSS uses a parallel composition of r rounds of the
5-pass identification scheme from [SSH11]. So we have that

AdvGame1
A1,ℓ

(λ) ≤ AdvGame2
A2,ℓ

(λ) +

(
q + 1

2q

)r

.

Let Game 3 be defined as the following game:

Game 3(λ) :

1 : MQAT.Setup(1λ)→ cpp

2 : MQAT.KeyGen(cpp)→ (sk, pk)

3 : queries := ∅
4 : inverses := ∅

5 : (t, (z, z∗))← AOIssue,OInv
3 (cpp, pk)

6 : if t ∈ queries or

7 : z ∈ inverses then abort

8 : return P(z) +R(z∗) = Hm(t)

OIssue()

1 : (t, σ)← ⟨MQAT.User(pk),AT.Sign(sk)⟩
2 : queries := queries ∪ {t}
3 : return (t, σ)

OInv(query)

1 : resp← MQAT.Sign0(sk, query)

2 : inverses := inverses ∪ {resp}
3 : return resp
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Adversary A3 calls A2 with its inputs and when A2 calls oracle OSign A3 calls oracle OInv.
When A2 outputs its list of ℓ+ 1 tokens, A3 outputs the token for which z was not already seen
and wins the game. Hence,

AdvGame2
A2,ℓ

(λ) ≤ AdvGame3
A3

(λ).

Let Game 4 be the same game as Game 3, but without the inverses oracle OInv. It is clear
that an adversary winning Game 3 will win Game 4: as UOV is secure by assumption, seeing
inverses does not give any advantage to adversary A4. Thus,

AdvGame3
A3

(λ) ≤ AdvGame4
A4

(λ).

Let Game 5 be the following game: given P : Fn
q → Fm

q an UOV public key, R : Fm
q → Fm

q a
randomly chosen quadratic map and access to an oracle H′(x) = P(Hn(x)) +R(Hm(x)), where
Hn : {0, 1}∗ → Fn

q and Hm : {0, 1}∗ → Fm
q are true random oracles, find a tuple (t, (x1,x2)) such

that P(x1) +R(x2) = Hm(t). An adversary winning Game 4 wins Game 5, so

AdvGame4
A4

(λ) ≤ AdvGame5
A5,P,R(λ).

Let Game 6 be the following game: given P : Fn
q → Fm

q an UOV public key, R : Fm
q → Fm

q a
randomly chosen quadratic map and w←$ Fm

q , find a tuple (x1,x2) such that P(x1)+R(x2) = w.
Since the output ofR(x) is indistinguishable from a random value in Fm

q , the output of the oracle
H′(x) does not give any advantage, and since Hm is modelled as a random oracle, an adversary
winning Game 5 will win Game 6. Hence,

AdvGame5
A5,P,R(λ) ≤ AdvGame6

A6,P,R,w(λ).

Let Game 7 be the following game: given P : Fn
q → Fm

q an UOV public key, R : Fm
q → Fm

q

a randomly chosen quadratic map , find a tuple (x1,x2) such that P(x1) +R(x2) = 0. A7 wins
by simulating Game 6 with (P,R+w,w) for a randomly chosen w. Hence, putting everything
together, we have that

AdvOMUF
A,ℓ (λ) ≤ AdvGame7

A7,P,R(λ) +

(
q + 1

2q

)r

.

As Game 7 is exactly the same problem as finding a solution (z, z∗) of the multivariate quadratic
equation system P(x1) + R(x2) = 0 for a randomly chosen quadratic map R : Fm

q → Fm
q and

an UOV public key P : Fn
q → Fm

q , which by assumption no adversary can win with probability
better than negligible, and r has been chosen such that MQDSS is EU-CMA-secure in order for(
q+1
2q

)r
to be negligible, thus finally

AdvOMUF
A,ℓ (λ) ≤ negl(λ)

which concludes the proof that MQAT is 1-more unforgeable.

As it was also the case in [PSM17], one of the assumption of Theorem 5 remains to be shown:
finding a solution (z, z∗) of the multivariate quadratic equation system P̄(x) = P(x1)+R(x2) = 0
for a randomly chosen quadratic map R : Fm

q → Fm
q and an UOV public key P : Fn

q → Fm
q is

a hard problem. We do not provide a proof for the statement above, but rather justify this
premise by relying on the common hardness of MQ-based cryptography. There are two kinds
of strategies to attack the above assumption: 1) directly trying to solve the system P̄(x) = 0
as an instance of the MQ problem and 2) use the special structure of system P̄ to decompose
it into easily invertible maps. We will discuss below the classical and post-quantum algorithms
for solving the MQ problem and then the structural attacks on P̄.

24



4.2.1 Algorithms for solving the MQ problem

The number of equations m and the number of variables n strongly determine the hardness
of solving the MQ problem. Whenever m ≥ n (over-determined systems), we give away more
information about the system and the attacks described below perform even better; there is then
no incentive of choosing m ≥ n. On the other hand, when n > m (under-determined systems),
one can simply fix the n − m excessive variables and the problem thus reduces to solving a
system of m equations in m variables; so there is also no incentive of choosing n > m. With the
above remarks in mind, we will assume for the rest of this section that m = n. Also, without
loss of generality, let F(x) ∈MQ(n,m,Fq) be the MQ problem instance that we are trying to
solve.

Exhaustive search. The most naive and simple way of solving the MQ problem would be
to try all the possible x ∈ Fn

q . For a single polynomial, this would result in O
(
n2

)
additions and

multiplications. The overall complexity would then be of O
(
mn2 · qn

)
field operations. Another

technique introduced in [BCC+10] for fast enumeration in F2 would only require log(n)2n+2

operations and could be generalised for larger field size, resulting in O
(
logq(n) · qn

)
operations

for a field Fq.

The hybrid approach. Currently, the best known techniques to solve multivariate quadratic
equation systems is to use a combination of exhaustive search and quadratic equation solvers,
such as the F5 algorithm [Fau02] or the FXL algorithm [YC05]. These techniques are called the
hybrid approach and have been first presented in [BFP09]. The general idea of these algorithms
is to fix k variables amongst the n, then use advanced computer algebra techniques, often called
specialisation processes, to solve the smaller system in n−k variables, and then finally optimise
for this very parameter k.

Crossbred. The Crossbred algorithm has been developed in [JV18]. It was originally designed
to work in binary fields (F2) but could be generalised in arbitrary sized fields Fq. The principle
is to perform first some operations on the system and only then fix the variables as above.

Quantum attacks. There is no specialised quantum algorithm yet designed to solve multi-
variate quadratic equation systems. One of the best promising way to speed up the attacks
described above would be to use Grover’s algorithm [Gro96]. In fact, it would outperform the
above approaches by at most a square root factor. In [SW16], the authors described two different
quantum circuits that could be used as oracles in Grover’s algorithm.

Complexities of those algorithms are discussed in the next section, with some concrete num-
bers.

4.2.2 Structural attacks on P̄

The special structure of the quadratic multivariate equations system P̄ could be used to facilitate
attacks against the aforementioned assumption. The goal of such attacks on P̄ is to find a
decomposition in easily invertible maps. In the case of our system, we have that

P̄(x) = P(x1) +R(x2)

= F ◦ T (x1) +R(x2)

= (F +R) ◦ T ′(x)

= F ′ ◦ T ′(x)
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where the linear transformation T ′ is represented by the matrix

T ′ =

(
T 0
0 1m

)
.

Then, we need to recover this map T ′ using the known structure of F ′ = F + R. As the
coefficients of R have been chosen uniformly at random in Fq so that R is a random multivariate
quadratic equations system, the only structure we can use to recover the matrix T is the central
map F . Thus, a structural attack against the structure of our multivariate quadratic system P̄
is at least as hard as a structural attack on system P.

By choosing appropriate parameters for our new anonymous tokens construction, such that
the combination of the underlying primitives (mainly UOV and MQDSS) is secure, we can prevent
all the attacks described above.

5 Implementation

In this section we will present an concrete Go implementation of MQAT. The source code can
be found at https://github.com/sebhauri/mqat. We first discuss the parameter selection
according to the different attacks mentioned above and then explain different implementation
details that are relevant. Finally, we state the performance results that we obtained.

5.1 Choice of the MQ parameters

Following the security analysis, we want to choose the best fitted parameters for the aimed
security level. We first choose the parameters for UOV, as it is the first primitive that appears
in our issuing scheme. As we want to achive NIST’s first level of security, this leaves us with
two choices of parameters9:

q m n

uov-Ip 256 44 112

uov-Is 16 64 160

Table 5: Parameters for NIST security level 1 of the UOV signature scheme taken
from the official recommended parameter sets.

The first one reduces slightly the size of the keys and the second one reduces slightly the signature
size. Regarding their performance, the first one can sign and verify signatures in less cycles than
the second one. Also, implementation of F256 seems easier to implement in typed programming
languages, as one field element can be represented by one byte. Thus we decide to go with the
first parameter set. We now need to see if those parameters can fit with the second part of our
scheme, MQDSS. Recall that we add the system R of m equations in m variables on the UOV
system, and so MQDSS is performed on the system P̄ = P +R : Fn+m

q → Fm
q , where (q,m, n)

are the UOV parameters. So the parameters for MQDSS in our scheme are q = 256, m = 44 and
n = 158. We then need to show that the best known attacks on theMQ problem are mitigated
for this parameter set. In our case, n > m, which means that an adversary against the MQ
problem could fix n − m variables of the system and solve the MQ system for q = 256 and
m = n = 44, as explained in the attacks against theMQ problem in Section 4.2.1. Fortunately,
the MQDSS latest specification10 (Specification 2.1, Section 2.2, Table 2.2) made the analysis
for q = 256 and m = n = 40. The results are summarized in the table below:

9An official publication [BCH+23] has been made for UOV modern parameters. The most recent specifications
can be found on https://www.uovsig.org/.

10The official publication [CHR+16] of MQDSS only specifies one parameter set. Most recent parameters can
be found on https://mqdss.org/, under the latest specification.
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k Field operations

FastEnum - 2328

HybridF5 3 2153

Crossbred 23 2206

Table 6: Classical attack complexities on theMQ problem for parameters n = m =
40, q = 256. The value k represents the number of fixed variables in the different
specialisation processes.

As in our case m = 44, those parameters seem to be enough to get a security of λ = 128 bits.
For quantum security, the latest specification (Specification 2.1, Section 2.3, Tables 2.3, 2.4
and 2.5) also gives an estimates of the different attacks using Grover’s algorithm to speed up
computations, and the results are presented it the table below:

Gates Circuit depth

n k T Clifford T Total

FastEnum 32 - 2152.21 2152.69 2142.63 2143.83

HybridF5
40 19 2107.80 2145.27 297.44 298.51

48 23 2124.58 2164.80 2113.70 2114.77

Crossbred 48 23 2124.58 2125.06 2114.96 2116.14

Table 7: Quantum attack complexities on the MQ problem for parameters q = 256
with different values of n. The value k represents the number of fixed variables in
the different specialisation processes. The count of gates and depths is given as the
number of T-gates along with the overall number of Clifford gates.

With the complexities described above, we are confident with our parameter set, namely m =
44, n = 112 and q = 256, that our new anonymous token scheme MQAT is secure against classical
and post-quantum direct attacks against the underlying MQ problem.

5.2 Other parameters

We need all the other cryptographic primitives to be chosen in order to achieve a security of
λ = 128 bits. The primitives left are composed of the different cryptographic hash functions,
the commitment schemes and the pseudo-number generators. We also need to chose the number
of rounds r in order for MQDSS to achieve EU-CMA-security.

The random oracles. For the hash function H and the two commitment schemes Com0

and Com1, we use the standard Go implementation of SHA3-256. From now on, we use the
value HASH_BYTES to denote the output length of this function, in bytes. This ensures us a
quantum security of 128 bits. For the hash functions Hm,H1 and H2, we use the standard Go
implementation of SHAKE-256. This function allows us to create variable-output-length hash
and achieves a generic security strength of 256 bits in the random oracle model and thus at least
128 bits of quantum security.

The number of MQDSS rounds. Another parameter to set now is the number r of rounds
for the MQDSS to be sound enough. Recall that there is a formula for this parameter, that is
the smallest r such that

1

Pr[N ]
+ 2r−N ≥ 2λ, ∀ 0 ≤ N ≤ r
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where

Pr[N ] =
r∑

i=N

(
1

q

)i(q − 1

q

)r−i(r
i

)
and λ is the security parameter. We aim at a security level λ = 128 to achieve NIST security
level 1, and with our value q = 256 we find the number of round for MQDSS to be r = 156. The
Python script to find this parameter is presented in Appendix A.

5.3 Implementation details

We discuss in this section other implementation details. First, we need a way to represent
a field element and define its basic operations. We chose our field F256 to be the AES field
F2[X]/(X8 + X4 + X3 + X + 1). Elements of F256 are then polynomials of degree less than 8
with coefficients in {0, 1}. We can easily represent them as bytes, where bit bi represents the
coefficient of degree i, i = 0, . . . , 7. In our Go implementation, we use the unsigned integer over
8 bits basic type uint8. Having this defined, we need a way to compute quadratic multivariate
polynomials. In our implementation, we only consider quadratic homogeneous polynomials,
as this does not seem to lower the security of the underlying schemes. Then a multivariate
quadratic polynomial fi(x) in n variables can be uniquely represented as an upper-diagonal
matrix Pi ∈ Fn×n

256 , such that
fi(x) = xT · Pi · x

composed of n·(n+1)
2 non-zero elements. A vector in Fn

256 is represented as an n-byte string. In
the next paragraphs, we will discuss implementation details about the different algorithms of
our scheme.

Key generation. We recall that the private key of our anonymous token scheme is composed
of an UOV private key and that the public key is the corresponding UOV public key along with
a random multivariate quadratic system R. We use the latest UOV specification ([BCH+23])
to implement the UOV part, following the classic variant, using some twists to simplify the

implementation that we explain hereafter. The expansion of matrices {P (1)
i }i∈[m] and {P (2)

i }i∈[m]

is implemented using the standard SHAKE-128 implementation as opposed to aes128ctr. We
sample matrices in row-major order where for the particular case of upper-diagonal matrices we
do not encode the zeroes below the diagonal. Set of matrices are encoded with the concatenation
of matrices and not in the interleaved fashion. We use a seed of λ bits to generate the random
systemR and we recompute the system with the standard SHAKE-128 implementation whenever
needed; we thus reduce the size of the public key. This random system is composed of m upper-
triangle matrices in Fm×m

256 . Overall, we have that

sk =

(
seed uov sk, O,

{
P

(1)
i , Si

}
i∈[m]

)
,

pk =

(
seed uov pk,

{
P

(1)
i , P

(2)
i , P

(3)
i

}
i∈[m]

, seed random sys

)
with

|sk| = λ

8
+ (m · (n−m)) +

(
m · (n−m)(n−m + 1)

2
+ m2 · (n−m)

)
bytes,

|pk| = λ

8
+

(
m · n · (n + 1)

2

)
+

λ

8
bytes.
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Token issuance. In the User0(·) procedure, z∗ is generated using the Go standard SHAKE-256
implementation with a fresh randomly generated seed of 2λ bits. The output state is composed
of the tag t and the computed value z∗. The Sign0(·) procedure is implemented as in the latest
UOV specification ([BCH+23]). The only difference is that we do not use the hash as the message
is already in the correct domain. Thus we also do not use a salt to generate vector v (the random
vinegar vector). Finally, the User1(·) expands the random system R from seed_random_sys as
explained above and computes an MQDSS signature σ for vector (z||z∗) of the system P̄ = P+R.
We follow the latest MQDSS specification (2.1) transposed for F256 to do so. The only differences
is that we do not need to expand neither theMQ system nor the secret vector has it is already
done. Overall, we end with a token t = (t, σ) with

|t| = 2λ

8
+ ((2 + r) · HASH BYTES + r · (2n + m)) bytes.

Token verification. The token verification is implemented by first hashing the tag t into
w and checking the MQDSS signature σ on it. For this last part, we use the latest MQDSS
specification (2.1).

Evaluation of P̄. In several procedures, we have to evaluate the system P̄(x) = P(x1)+R(x2).
We can use the special structure of the system to speed up the evaluation: we evaluate P and
R separately and add the results afterwards. We use the technique described in [CKY21] to
compute each system separately.

5.4 Benchmark results

We did a benchmark of our new post-quantum anonymous token scheme with the parameters
and implementation details described above. The experiments were run on a 2017 MacBook Pro
with a 2.3GHz Intel Core i5 processor and 8 GB of DDR3 RAM.

Key and token size. With the expression derived above, we obtain a private (resp. public)
key of 237.88 KB (resp. 278.46 KB). The token length is 46.9 KB.

Performance. In our implementation, the computation of theMQ system is the most costly
part, and some optimisation could be made to improve its efficiency. In fact, if we recall that
1 evaluation of G corresponds to 3 evaluations of the system P̄, the user evaluates the system
once to check the answer from the issuer, 3r times when computing the commitments and r

times in the computation process of the e
(i)
1 ’s vectors, which gives a total of 4r+1 times. About

the verifier, it has to compute the system once if bi = 0 and 4 times if bi = 1, i ∈ [r], which
gives on average the verifier evaluating the system 2.5r times (Pr[bi = 0] = Pr[bi = 1] = 1

2).
We summarise the results in the Table 8, where we also report the metrics from the schemes
discussed in Sections 3.2 and 3.3. The values in columns user, issuer and verifier are given in
milliseconds.

29



scheme tokens λ sig trans user issuer verifier

[PWFHW23]
better size

1 115 85.6 kB 2.4 kB 4882 - 19.8

[PWFHW23]
balanced

1 115 112,3 kB 2.4 kB 660 - 22

[PWFHW23]
better time

1 115 173.3 kB 2.4 kB 304 - 31

[BLNS23]
NTRU-ISISf

1 128 243 kB 473 kB - - -

[BLNS23] Int-
NTRU-ISISf

1 128 62 kB 107 kB - - -

[Bas23] 1 128 32 B 8.7 MB - - -

[ADDG23]∗ 1 128 32 B 4078,44 MB 256,1 123∗∗ -

[ADDG23]∗

64-queries
amortised

1 128 2048 B 4078,41 MB 256,1 123∗∗ -

[dSGP23] 1 λ - (2λ + 17
2 ) log p + 4λ - - -

[PSM17] 1 128 28.5 kB - 7760 19 5505

MQAT 1 128 46.9 kB 156 B 919 5 560

MQAT
modified

100 128 15,63 kB 15.6 kB 50 500 1479∗∗∗

Table 8: Overall comparison.
∗ Implementation has not been made with verifiability so timings might be wrong.
∗∗Estimated.
∗∗∗Verification time per token.

Discussion. With the results obtained above, we can clearly see that our token and transcript
sizes can compete with other state-of-the-art constructions. Moreover, the timings we obtain for
the user, the issuer and the verifier are very promising. To get even more practical results, one
can imagine the following modification in our anonymous token construction: stop the token
issuance phase after the user checks the answer from the issuer. We end up with the issuance
protocol presented in Figure 10. A token is then a pair (t, (z, z∗)) where t is a random tag in
{0, 1}2λ and (z, z∗) is a solution to the system P(x1) +R(x2) = Hm(t). In this case, the rest of
the User1(·) procedure is performed during the redemption phase: the user first computes the
MQDSS signature using the solution (z, z∗) and then sends it to the verifier along with the tag t
to be checked. With this construction, the user computes the overall system P̄ only once during
the issuance phase, which allows for batching token requests and even more practical results. By
extrapolating the numbers obtained above and using the modified scheme, a user could receive
100 tokens in ∼ 550 ms and verify each of them in ∼ 1470 ms; the signature size would also
decrease as the MQDSS signature would only be computed later when a token is spent. We
summarize these metrics under MQAT modified in Table 8. Comparing with the other schemes,
isogeny-based constructions achieve the most compact signature sizes, but can be extremely
slow in the verification procedure. Also, their transcript sizes are impractical, and even more in
the context of high-latency networks. In a setting where the network has a low bandwidth, such
as assumed in a shared IP setting, the numbers obtained using MQAT seem very reasonable
and offer in our opinion a better trade-off between sizes and performance. MQAT has also more
compact signature and transcript sizes than [PWFHW23] and [BLNS23]. The performance of
[PWFHW23] is comparable with ours but again the trade-off between signature size, transcript
size, performance and practicality seems in the favor of MQAT.
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The modified token issuance protocol

User Issuer

t←$ {0, 1}2λ

w← Hm(t)

z∗ ←$ Fm
q

w∗ := R(z∗)

w̃ := w −w∗

w̃

Find u ∈ Fn
q such that F(u) = w̃

z := T −1(u)

z

if P(z) +R(z∗) ̸= w then

abort

return (t, (z, z∗))

Figure 10: The modified issuance protocol for MQAT.

6 Conclusion

In conclusion, this work has provided a comprehensive exploration of anonymous tokens, ranging
from classical cryptography constructions to innovative schemes rooted in post-quantum cryp-
tography. By delving into the principles of various cryptographic primitives, including post-
quantum VOPRFs, blind signatures, and multivariate cryptography, we have contributed to
the evolving landscape of privacy-preserving technologies. Our novel post-quantum anonymous
tokens construction, based on multivariate cryptography, fulfills the usual security properties of
unlinkability and one-more token unforgeability but also adds post-quantum resilience. We also
stress that our scheme is publicly verifiable. The proposed instantiation achieves a quantum
security of 128 bits. Notably, the protocol’s efficiency, evident in short token and transcript
sizes, positions it competitively against contemporary constructions. Furthermore, the potential
for optimizing the scheme, as evidenced by the prospect of batch issuance, adds a layer of prac-
ticality to its theoretical merits. Looking ahead, future endeavors could explore the integration
of private and/or public metadata into tokens, offering an avenue for enhancing customisation
within the framework of anonymous tokens. This work stands as a testament to the ongoing
quest for robust, efficient, and privacy-centric cryptographic solutions in the face of emerging
challenges.
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A Code for finding the number of MQDSS rounds

import math

k = 128
q = 256 .0
r min = 128
r max = 256
one over q = 1/q
q minus one over q = (q−1)/q
goa l = 2 ∗∗ 128
on e ov e r go a l = 1 .0/ goa l

de f pr (N, r ) :
sum = 0.0
f o r i in range (N, r ) :

a = one over q ∗∗ i
b = q minus one over q ∗∗ ( r−i )
c = math . comb( r , i )
tmp = a ∗ b ∗ c
sum += tmp

return sum

i f name == ” main ” :
f o r r in range ( r min , r max ) :

t o t a l = 0
f o r i in range ( r ) :

p r i = pr ( i , r )
i f p r i <= one ov e r go a l :

t o t a l += 1
cont inue

o n e o v e r p r i = 1/ p r i
two power r minus i = pow(2 , r−i )
tmp = o n e o v e r p r i + two power r minus i
i f tmp >= goa l :

t o t a l += 1
i f t o t a l == r :

p r i n t ( f ”The number o f round i s { r }” )
break
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