
SAS-based authentication for secure
messaging

Sébastien Hauri

School of Computer and Communication Sciences

Master Semester Project

June 2022

Responsible
Prof. Serge Vaudenay

EPFL / LASEC

Supervisor
Daniel Collins
EPFL / LASEC

Contents

1 Introduction 2

2 Signal 3
2.1 The X3DH key agreement protocol 4
2.2 The double ratchet algorithm 4
2.3 Entity authentication mechanism 5

3 Modified Signal key exchange and authentication 7

4 SAS-based authentication 8

5 The ARC scheme 9
5.1 Syntax and security . 9
5.2 Primitive definitions . 13
5.3 The scheme . 17
5.4 Security of the scheme . 19

6 Conclusion 20

1

1 Introduction

Primitives such as ratcheted key exchange have gained a lot of popularity
in recent years. This is mainly due to the fact that they provide strong
security guarantees. They can achieve forward secrecy and post-compromise
security to ensure confidentiality. A main example is the Signal protocol
which provides end-to-end encryption in secure messaging. It is one of the
the most popular protocols used in the wild. We find it implemented in
the eponymous application, WhatsApp, Facebook Messenger Secret Con-
versations and a lot more. Inspired by this protocol, researchers proposed
formalism and new protocols to achieve these security guarantees in different
forms [BSJ+17].

On another side, there has not been a lot of development in the domain
of entity authentication. The Signal app uses so called “safety numbers”
[Mar16] to solve this problem. Basically, the two parties involved produce
some fingerprint based on a mix of their long-term secrets that they encode
in a QR code1. They then compare those code they each produced out-of-
band. This has been proven to not be very secure since it relies only on
long-term secrets, which can be exposed or stolen. Thus any key derived
after the initial key exchange cannot be authenticated properly. [DH20]
proposed a modified version to make it more robust. It authenticates the
asymmetric keying material and allows for out-of-band detection of an active
adversary each time the direction of communication changes.

It makes sense to consider short authenticated strings (SAS) [Vau05]
here since an amount of data would have to be compared out-of-band, and
we would intuitively like this amount be as short as possible. Short messages
can be used in situations where QR codes can’t, can reduce user mistakes
and lead to time savings, e.g. over the phone. A short authenticated string
is, as in its name a short string, used to authenticate a message with the
help of an authenticated channel. Two SAS-based message authentication
protocols were first introduced by [Vau05], based on commitment schemes.
They have then been refined in [PV06]. The main primitives are mutual
message authentication and message cross-authentication. The big differ-
ence between the two is that one is used to authenticate a commonly shared
message and the other to authenticate two2 messages.

In this work, we first begin by explaining Signal’s key exchange, double
ratchet algorithm and its out-of-band authentication safety numbers pro-
tocol, followed by the modified version proposed by [DH20]. Later, we in-

1There are in fact two encodings: a QR code and a numeric code. The former is a QR
encoding of the serialization of the fingerprint. The latter is based on a truncation of the
numeric representation of the fingerprint.

2One per party.

2

troduce SAS-based cryptography and mutual message authentication from
[PV06] and we explain how it could fit in our authentication scheme. Finally,
we define our a modification of DH’s proposed messaging scheme based on
the previous primitives. We will present the building blocks of the scheme
and also give a construction. We will finish by giving some intuition on why
it is secure in the security model we propose and a way to prove it.

2 Signal

We give in this section a brief explanation on Signal’s key exchange, along
with its double ratchet algorithm and its authentication mechanism. We
list below all types of keys we can find in the protocol. All public keys have
some corresponding private keys: we simplify the description by focusing
only on public keys here as in [MP16].

• Identity keys (IK): those are long-term DH key pairs. They are used
to sign and derive other DH keys.

• Signed prekeys (SPK): medium-term DH key pairs. They are signed
with the identity key.

• One-time prekeys (OPK): ephemeral DH key pairs. They are used in
a single X3DH protocol run.

• Ephemeral keys (EK): ephemeral DH key pair used when deriving a
shared key between two participants.

• Ratchet keys (RCK): ephemeral DH key pair used each time the con-
versation changes sense in the asymmetric ratchet.

• Root keys (RK): symmetric secret value, used as input to a KDF to
derive new root and chain keys.

• Chain key (CK): symmetric secret value, used as input to a KDF to
get new encryption keys.

• Message (Encryption) keys (MK): symmetric secret keys used to en-
crypt messages.

Signal uses some defined functions KDF (·) which denotes some key deriva-
tion function, KDF (K, ·) which relates to some keyed key derivation func-
tion and DH(X,Y) which is a Diffie-Hellman computation between the
public key Y and the private key related to X.

3

2.1 The X3DH key agreement protocol

The Extended Triple Diffie-Hellman (X3DH) protocol [MP16] aims at estab-
lishing a shared secret key between two parties (Alice and Bob). One of the
main advantage of such a protocol is that it allows the key exchange (and
thus the conversation) to begin with only one party being online. When
a user (we take here Bob) registers in Signal, the following key material is
generated (client-side):

• IKB, Bob’s identity key

• SPKB, Bob’s signed prekey

• {OPKi
B}i=1,...,n, a set of n one-time prekeys

• Sig(IKB, SPKB), the signature of Bob’s signed prekey

All of this is packed in what is called a “prekey bundle” and is published
on a Signal’s server. The medium and short-term key will eventually be
deleted and/or replaced by new key material for forward security. When
Alice wants to start a conversation with Bob (we assume here Alice has
already generated her key material), she fetches Bob’s prekey bundle from
the server, verifies the signature of Bob’s signed prekey, chooses one of Bob’s
one-time prekey, generates a new ephemeral and ratchet keys EKA, RCKA

and derives a shared secret in the following way [MP16]:

DH1 = DH(IKA, SPKB)

DH2 = DH(EKA, IKB)

DH3 = DH(EKA, SPKB)

DH4 = DH(EKA, OPKB)

SK = KDF (DH1||DH2||DH3||DH4)

She then uses this shared secret to create the first root, chain and message
keys:

RK0, CK0
0 = KDF (SK,DH(RCKA, SPKB))

CK0
1 ,MK0

1 = KDF (CK0
0)

This marks the end of the X3DH key agreement protocol. A simplified
scheme is depicted in figure 1. Alice can then send an initial message to Bob,
encrypted with MK0

1 and associated data RCKA plus other identification
material in order to Bob getting the same secret.

2.2 The double ratchet algorithm

The asymmetric ratchet is used to enforce future secrecy or post-compromise
security. Each time a new conversation begins or each time the direction

4

Figure 1: The (simplified) X3DH protocol

of messaging changes, a new iteration of this protocol is applied3. Each
party generates a fresh ratchet key pair. ”Every message from either party
begins with a header which contains the sender’s current ratchet public key”
[PM16]. Those new ratchet keys are used along with previous ratchet and
root keys to derive new root and chain keys in the following way:

RKi, CKi
0 ← KDF (RKi−1, DH(RCKi, RCKi−1))

This new chain key is used to derive new message keys:

CKi
1,MKi

1 ← KDF (CKi
0)

This is what is called the symmetric ratchet. We depict this key schedule in
figure 2. We don’t elaborate on the symmetric ratchet since it is out of the
scope of this work.

2.3 Entity authentication mechanism

The Signal app comes with a user mediated entity authentication mecha-
nism called ”safety numbers”. The software produces fingerprints based on
long-term keying material who can take form of either a QR code or a nu-
meric code. We only present here the QR code representation since it is the
mostly used in practice and also that the numeric one can be computed in
a quite similar manner. Also note that since Signal does not provide any
documentation on this entity authentication mechanism, this description is

3We denote by epoch a time when the direction of the communication changes. The
first epoch is epoch 0.

5

Figure 2: Key schedule for the Signal double ratchet
algorithm. It is adapted from [DH20] with the notation
of [PM16] used in this work.

taken from [DH20]. The advantage of using scannable fingerprints is that it
effectively removes the risk of human error.
The QR code is built in the following way (following the perspective of A):

local_fprint = Hi(0||fvers||IKA
4||IDA, IKA)

remote_fprint = Hi(0||fvers||IKB||IDB, IKB)

where Hi(x, y) is an iterative hash function such that H0 = H(x), Hi =
H(Hi−1, y), and fvers = 0. In practice, H is the SHA2 function with 512
output bits with an iteration number of 5200. The resulting hashes are
then truncated to 240 bits. This impacts directly the security regarding
collisions between hashes and it is thus lowered. The QR code is then the
representation of {svers5, 0, local_fprint, remote_fprint} serialised.

4ID is the output of a function IDGen which takes as inout the private key associated
to IK

5svers corresponds to the scannable fingerprint version number. There are two versions
(namely 0 and 1) and version 1 is the latest.

6

3 Modified Signal key exchange and authentica-
tion

In this section, we explain the work of [DH20]. We state how the current
Signal’s so-called Safety Numbers could be manipulated to trick entity au-
thentication. We will also explain their modified key-schedule and see why
it could fit our model.

As Signal has made great advancements towards post-compromise secu-
rity and forward secrecy for confidentiality, we can find some flaws in the
engineering of their entity authentication mechanism. The main problem
pointed out is that the ”safety numbers” only considers long-term secret
keys IK. Thus, it does not contain any information about the state of the
session. Assume that an adversary manages to expose one of the party’s
states after initialization. Then, he will be able to inject messages using
ephemeral keys alone in the conversation and impersonate the participant
without being detected by the protocol.

Figure 3: The modified key schedule described in [DH20]
with modified notations.

To cope with this problem, [DH20] came with a new key schedule that
contains an authentication key (AK) used as input key to an HMAC function
of the fingerprints. This way, the QR code is always bound to the session
state and authenticates it. One intuition about why authenticating the
entire conversation is better than just the initial keying material, even if we
do it only once, is that more messages will be authenticated.

7

4 SAS-based authentication

Authenticated key-agreement has been a widely researched area since the
beginning of public key cryptography. We have seen the rise of the use of
certificates in the public key infrastructure model in protocols such as TLS.
This model is based on a trusted third party. On another side, we have seen
protocols such as PGP who relies on a web-of-trust model. The SAS-based
authentication came with the idea of authenticating the output of a key
agreement protocol with the use of a commitment scheme which can then
be verified using an authenticate channel (e.g. in person, by recognising
voice over the phone). In [PV06], the authors propose two protocols: (i) a
mutual-authentication protocol where two parties authenticate a common
value, and (ii) a cross-authentication protocol where the value is different
for each of the two user. We will only focus on the former as it is the one
used in this work.

Alice’s input: mA Bob’s input: mB

Pick RA ∈ {0, 1}k

(c, d)← Commit(mA, RA)
c−−−−−−−−−−−−−−→ Pick RB ∈ {0, 1}k
RB←−−−−−−−−−−−−−−
d−−−−−−−−−−−−−−→ R̂A ← Open(mB, ĉ, d̂)

SAS ← RA ⊕ R̂B
authenticateA(SAS)−−−−−−−−−−−−−−→ SAS

?
= R̂A ⊕RB

Check SAS is the same
authenticateB(SAS)←−−−−−−−−−−−−−−

Figure 4: The SAS-based message mutual authentica-
tion protocol [PV06]

The SAS-based message mutual authentication protocol is, as previously
stated, based on a commitment scheme. Assume the two parties of the proto-
col are Alice and Bob and that the values to be authenticate are respectively
mA and mB, the output of some key agreement protocol (without an attack
on this protocol we would have mA = mB). Alice picks a random number
and makes a commitment on this value using mA. Bob picks a random
value and sends it back to Alice. Finally, Alice sends the decommit value
in order to Bob opening the random value chosen by Alice. All of those
communications are made on the insecure channel. They then both com-
pute some value based on the random values they exchanged and compare
it out-of-band (i.e. on an authenticated channel). This short out-of-band
channel is the main key of the protocol. It allows the authentication and
integrity of the short computed strings and thus authenticates the messages.
We depict the protocol in figure 4. The security of this protocol relies on
the fact that an active adversary has only one shot to equivocate the com-

8

mitment of Alice in each protocol run. This is mainly due to the fact that
an adversary cannot precompute anything since he is not aware of Alice’s
(and thus Bob’s) input of the protocol. In other words, the adversary has
to choose RB without knowing RA in the first place. As he cannot guess
those values, offline attacks fail (assuming in this case that the commitment
scheme is secure).

5 The ARC scheme

We describe in this section how the modified Signal key schedule mixed with
a SAS-based authentication protocol could be a solution to achieve entity
authentication. Suppose the key schedule of figure 3 is used. The authenti-
cation key is supposed to be shared between the two parties. We can take
advantage of this as input to a SAS-based message mutual authentication
run. Mainly the idea is to start new instances of the SAS authentication
protocol each epoch. . To do so, at each epoch i, the sending party would
send a new commitment using value AKi, a random challenge value Ri−1

used for the authentication of epoch i − 1 and the decommit value di−2 to
authenticate epoch i − 2 6. In this system, if current epoch is i, one can
authenticate all epochs j such that 1 < j < i − 1. A series of messages
should look like described in figure 5.

This way, the authentication does not rely on only long-term secrets and
we can reduce the amount of computations done by each device. On what
could be an implementation, as the SAS should be short enough, we could
output it as a small numeric value, e.g. 6 digits, and use that representation
in a similar manner as the safety numbers implemented by Signal. Note
that a QR representation loses its sense due to the shortness of the SAS.

We hereafter define formally that new model. We first define a syn-
tax and a security model for it. The scheme will then combine different
primitives that are presented before describing the scheme itself.

5.1 Syntax and security

Definition 1 (Authenticated ratcheted communication) An authen-
ticated ratcheted communication scheme (ARC) is composed of the following
PPT algorithms:

• Setup(1λ)→ pp takes a unary string 1λ and outputs public parameters
pp.

• Gen(pp) → (pk, sk) takes public parameters pp and outputs a pub-
lic/secret key pair (pk, sk).

6Note that this behaviour cannot work for the first and second epoch of the commu-
nication. Thus the values with a negative superscript should (in fact cannot since they
don’t exist) be sent.

9

Alice Bob

. . .

di−3
B , Ri−2

B , ci−1
A ,mi−1

last←−−−−−−−−−−−−−−−−−−

Ri
A, c

i
A, d

i
A

di−2
A , Ri−1

A , ciA,m
i
0−−−−−−−−−−−−−−−−−−→

di−2
A , Ri−1

A , ciA,m
i
1−−−−−−−−−−−−−−−−−−→

di−2
A , Ri−1

A , ciA,m
i
2−−−−−−−−−−−−−−−−−−→

. . .

di−1
B , Ri

B, c
i+1
A ,mi+1

0←−−−−−−−−−−−−−−−−−− Ri+1
B , ci+1

B , di+1
B

di−1
B , Ri

B, c
i+1
A ,mi+1

1←−−−−−−−−−−−−−−−−−−
. . .

Ri+2
A , ci+2

A , di+2
A

diA, R
i+1
A , ci+2

A ,mi+2
0−−−−−−−−−−−−−−−−−−→

diA, R
i+1
A , ci+2

A ,mi+2
1−−−−−−−−−−−−−−−−−−→

. . .

Figure 5: How the direction changes through the dis-
cussion. In this example, when Bob receives one of the
mi+2 messages, he can compute the SAS of epoch i with
diA and the random number he sent in the previous round.
Note that with the receiving of Ri+1

A he can already com-
pute the SAS of epoch i+ 1.

• Init(pp, skP , pkP ,P)→ stP for P ∈ {A,B} takes public parameters pp,
P’s secret key skP , partner P’s public key pkP and party identifier P
and outputs a state stP for P.

• Send(stP , ad, pt) → (st′P , ct) takes a state stP , associated data ad and
a plaintext pt and outputs a new state st′P and ciphertext ct.

• Receive(stP , ad, ct) → (acc, st′P , pt, t, i) takes a state stP , associated
data ad and ciphertext ct and outputs an acceptance bit acc ∈ {true, false},
state st′P , plaintext pt, epoch number t and message number i.

• AuthSend(stP)→ (at, st′P) takes a state stP and outputs an authetica-
tion tag at (or ⊥ if it failed) and a new state st′P .

• AuthReceive(stP , at) → (auth, st′P) takes a state stP and an authen-

10

tication tag at and outputs a bit auth (0 if authentication failed, 1
otherwise) and a new state st′P .

As done by CDV in [CDV21], an additional Initall(pp) → (stA, stB, z) al-
gorithm returning the initial states of parties A and B together with public
information z is defined as follows:

Initall(pp)

1 : (pkA, skA)← Gen(pp)

2 : (pkB, skB)← Gen(pp)

3 : stA ← Init(pp, skA, pkB,A)

4 : stB ← Init(pp, skB, pkA,B)

5 : z ← (pp, pkA, pkB)

6 : return (stA, stB, z)

To complete that definition, we need to formalize some security notions
for the scheme.

The Signal security. As said before, we defined the Signal security from
[ACD19]. As our scheme is based on theirs, with some little changes in the
notations and syntax, it maintains the security guarantees that they define.

Auth security. The Auth game formalises the security of the entity au-
thentication mechanism. The adversary is given access to the following
oracles :

• OSend(P, ad, pt) which sends a message pt with associated data ad
from a party P ∈ {A,B},

• ORecv(P, ad, ct) which receives a ciphertext ct with associated data ad
at P,

• OAuthSend and OAuthRecv which make parties use the authentication
channel,

• OExp(P) which exposes the state of party P and

• OExpPT(P, t, i) which exposes the i-th plaintext-ciphertext pair of epoch
t.

The goal of the adversary is to make OAuthRecv output true when it is
not supposed to. A ciphertext can be abstracted with 4 different parts: the
asymmetric, the SAS, the symmetric and the message part. The adversary
must forge a message with a new asymmetric part, and the authentication of

11

AuthAARC() :

1 : stA, stB, z← Initall(pp)

2 : sentA, sentB ← {}
3 : authsentA, authsentB ← {}
4 : exp, frgd← {}
5 : win← 0

6 : tA, iA, tB, iB ← 0

7 : AOSend,...,OExp → ⊥
8 : return win = 1

OSend(P, ad, pt) :
1 : if (P = A and tA is even)

2 : or (P = B and tB is odd) then

3 : tP ← tP + 1

4 : iP ← 0

5 : stP , ct← Send(stP , ad, pt)

6 : sentP [(tP , iP)]← (pt, ct)

7 : iP ← iP + 1

8 : return ct

ORecv(P, ad, ct) :
1 : acc, stP , pt, t, i← Receive(stP , ad, ct)

2 : if acc = true then

3 : tP ← max(tP , t)

4 : if sent[(t, j)] = ⊥,∀j then
5 : frgd[t]← true

6 : return (acc, pt)

7 : (asym, sas, sym,mess)← ct

8 : for j s.t. sent[(t, j)] ̸= ⊥ do

9 : (pt′, ct′)← sent[(t, j)]

10 : (asym′, . . .)← ct′

11 : if asym ̸= asym′ then

12 : frgd[t]← true

13 : break

14 : return (acc, pt)

OExp(P) :
1 : exp[tP]← P
2 : return stP

OExpPT(P, t, i)
1 : return sentP [(t, i)]

OAuthSend(P) :
1 : at, stP ← AuthSend(stP)

2 : authsentP [tP]← at

3 : return tP

OAuthRecv(P, i) :
1 : at← authsentP [i]

2 : auth, stP ← AuthReceive(stP , at)

3 : if exp[i− 2] ̸= P and exp[i− 2] ̸= P then

4 : if auth and ∃j ≤ i− 2 s.t. frgd[j] = true then

5 : win← 1

6 : return auth

Figure 6: The Auth security game and its oracles

this “forged” epoch should pass. To check that this asymmetric part of the
message has changed, we check all the previously sent messages, split them
into different parts and compare those. The way forgeries are recorded is

12

simple: it is a map from an epoch number t to b ∈ {true, false}. If there has
been a forgery at epoch i, then there will a true at frgd[i]. Another point
is that, intuitively, the adversary cannot expose both states of A and B.
Exposures are handled in the same way as forgeries but the output domain
is {A,B} to denote which party has been exposed. Also when the state of a
party P is exposed, we do not provide authentication for the epochs that he
can trivially win in. This is captured by recording the epochs A and B are
in along with the last epoch where there has been an exposure. Variables
sentP keep track of messages sent by both parties in a map.
We then define the advantage of the adversary as:

AdvauthA (λ) = Pr[Auth→ true]

5.2 Primitive definitions

We now describe all the primitives we need in order to build our authenti-
cated ratcheted communication scheme: initial key agreement (IKA), contin-
uous key-agreement (CKA), forward-secure authenticated encryption with
associated data (FS-AEAD), PRF-PRNGs, two-output pseudo-random func-
tion (PRF) and SAS-based entity authentication (SAS-EA).

Definition 2 (CKA, FS-AEAD) We define CKA and FS-AEAD in a
same sense as what is described in section 4 of [ACD19].

A continuous key agreement is an asynchronous protocol between two par-
ties, composed of the following PPT algorithms:

• CKA-Init-A(k) → γA which takes as input a shared key k and outputs
an initial state γA.

• CKA-S(γ)→ (γ′,T, I) which takes as input a state γ and outputs a new
state γ′, a message T and a key I.

• CKA-R(γ) → (γ′, I) which takes as input a state γ and outputs a new
state γ′ and a key I.

A forward-secure authenticated encryption with associated data scheme
is a state-full primitive between two users A and B. It is composed of the
following PPT algorithms and memory management functions:

• FS-Init-S(k)→ vA (similarly FS-Init-R) which takes a symmetric key k
an outputs a state vA.

• FS-Send(v, a,m) → (v′, e) which takes as input as state v, associated
data a and message m and outputs a new state v′ and a ciphertext e.

13

• FS-Recv(v, a, e)→ (v′, i,m) which takes a state v, associated data a and
ciphertext e and outputs new state v′, an index i and a message m.

• FS-Stop(v) → n which given a state v outputs the number n of mes-
sages that have been received and then “erases” the FS-AEAD session
corresponding to v from memory.

• FS-Max(v, n) which given a state v and integer n stores n in memory
and erases the corresponding state v as soon as n messages have been
received.

A PRF-PRNG is a primitive which relates to both a pseudo-random func-
tion and a pseudo-random number generator. It is composed of the two
following PPT algorithms:

• P-Init(k)→ σ which takes a key k and outputs a state σ.

• P-Up(σ, I)→ (σ′,R) which takes as input a state σ and an input I and
returns a new state σ′ and an output R.

In what follows for the scheme, the output R will be a pair of keys which are
statistically independent.

For convenience of the reader, we recall here only the definitions of those
primitives. The correctness and security notions of all of them can be found
in section 4 of [ACD19].

To be more precise, our scheme takes into account the initial key agree-
ment made by both the sender and the receiver. This primitive is defined
hereafter.

Definition 3 (IKA) An initial key agreement is a primitive used to derive
a shared secret between two parties (A and B). As an example, the X3DH
protocol described in figure 1 is an instance of an initial key agreement pro-
tocol. More formally, it is composed of the following PPT algorithm:

• IKA(pp, skP , pkP) → k for P ∈ {A,B} which takes as input public
parameters pp, P’s secret key skP and partner P’s public key skP and
outputs a commonly shared key k.

Note that this algorithm could use randomness.

We also need to define a way to ”split” or expand a key in two statistically
independent new keys. This can be implemented using a pseudo-random
function that we define in what follows.

14

Definition 4 (PRF) We define a two-output pseudo-random function as
one of the form:

f : K × I → {0, 1}λ × {0, 1}λ

(k, i) 7→ (k1, k2)

i.e. which takes as input a key k ∈ K and an input i ∈ I and outputs two
independent keys k1, k2 ∈ {0, 1}λ.

The security of such a primitive can be formalized in the following game:

PRFb :

1 : k←$ {0, 1}λ

2 : b′ ← AOChal()

3 : map← {}
4 : return b′

OChal(i) :

1 : if b = 0

2 : return f(k, i)

3 : else

4 : if map[i] = ⊥ then

5 : (k1, k2)←$ {0, 1}λ × {0, 1}λ

6 : map[i]← (k1, k2)

7 : return (k1, k2)

8 : else

9 : (k1, k2)← map[i]

10 : return (k1, k2)

We say that f is a secure pseudo-random function if for all λ, AdvfA,OChal(λ) =
Pr[A → 1|b = 1] − Pr[A → 1|b = 0] is negligible where the probability is
taken over the choice of random coins.

Finally we need to define our new entity authentication mechanism based
on SAS cryptography. We first define the primitive and then explain how it
works internally as this will be part of our new model of messaging scheme.

Definition 5 (SAS-EA) SAS-based entity authentication is composed of
the following PPT algorithms:

• SAS-EA-Init(m)→ w which takes a message m as input and outputs a
state w,

• SAS-EA-Send(m) → (w,R) which takes a message m and returns a
state w and a new random number R,

• SAS-EA-Recv(m, drc,w−2,w−1) → w′ which takes a message m, an
input drc and two states w−2,w−1 and returns a new state w′.

Note that both algorithms are not deterministic. The scheme is depicted in
figure 7. A state is composed of the following variables :

15

• a computed SAS, which will be used to authenticate a message,

• the shared message m that we want to authenticate,

• a random number R used to commit on the message,

• the committed an decommit values.

SAS-EA-Init(m) :

1 : SAS,R, c, d← ⊥
2 : w← (SAS,m,R, c, d)

3 : return w

SAS-EA-Send(m) :

1 : Rnew←$ {0, 1}λ

2 : (cnew, dnew)← Commit(m,Rnew)

3 : w← (⊥,m,Rnew, cnew, dnew)

4 : Rresp←$ {0, 1}λ

5 : return (w,Rresp)

SAS-EA-Recv(m, drc,w−2,w−1) :

1 : (d̂−2, R̂−1, ĉ)← drc

2 : w−2.d← d̂−2

3 : R̂−2 ← Open(w−2.m, w−2.c, d̂−2)

4 : w−2.SAS ← w−2.R⊕ R̂−2

5 : w−1.SAS ← w−1.R⊕ R̂−1

6 : w← (⊥,m,⊥, ĉ,⊥)
7 : return w

Figure 7: The SAS-based authentication mechanism
scheme

The idea behind the algorithms is that at each round the sender computes
new commit and decommit values on the message by sampling a random
value in {0, 1}λ and using a Commit function, and storing all those values
in a new state. It then samples the new random value that it will send in the
current round, in response to the previous instance of the SAS protocol. The
receiver can then compute, with the help of the current drc variable, the two
previous SASs. Note that the states are updated in place in the reception
procedure. As this primitive is used continuously, and as at each round the
sender and receiver exchange role, at the end of each epoch, they should both
share the same n− 2 computed SAS 7.

We only give some intuition on why this mechanism is secure. By for-
malising and adapting some notations of the oracles defined in section 2.1
of [PV06], we can prove the same security guarantees.

7Assuming the current epoch is epoch n.

16

5.3 The scheme

In this section we formalise the ARC scheme of definition 1. The scheme
is highly inspired by the one described in [ACD19] and de facto the Sig-
nal protocol. As explained before, the main difference with Signal (other
than the ones introduced by [ACD19]) is that the scheme keeps tracks of
an SAS-based entity authentication state which will be used to authenti-
cate the communication. The scheme if depicted in figure 8. In order to
ease readability, the states are not made explicit but they contain all the
variables defined in the Init procedure. Also note that the Send and Receive
algorithms describe the behaviour for P = A. We assume it is the first party
sending some messages. To get the algorithms of B, one simply need to re-
place ”even” by ”odd” in the procedures. We explain hereafter the different
procedures and the slight changes we have made.

Setting up parameters. The Setup procedure is used, as its name and
definition say, to set up general public parameters used in the different
cryptographic primitives. It is not made explicit since this depends highly
on their implementations. For example in the X3DH protocol of Signal, one
has to decide several public parameters such as an elliptic curve (typically
the X25519 curve) or an hash function.

Generating the keying material. The Gen procedure is used to gen-
erate the keying material for both parties. It uses a previously generated
public parameters to do so. This algorithm is also not made explicit since, as
for setting up public parameters, it is really dependent of the cryptographic
primitives. Typically one could think of generating the elliptic curve pub-
lic/private key pairs used as input to the X3DH protocol.

Initialising a party. The Init procedure is used to handle the initialisation
of the state of both parties. It makes explicit the initial key agreement part
since our model of initialisation takes into account the secret and public keys
of both sender and receiver. It also takes into account the initialisation of the
SAS-based entity authentication mechanism. A new variable drc is added to
the state of each party. This variable represents a triplet which contains the
decommit value of the commitment made two epochs before, the random
value needed to compute the previous SAS and the current commitment.

Sending messages. The Send procedure is used to send a message to the
other party. It now contains directly the associated data as input unlike
Signal in [ACD19]. This could contain for example the output of the initial
key material, some constants or whatever. The SAS mechanism is triggered
whenever a new epoch occurs. The current epoch drc variable is sent each
time, since the protocol can handle out-of-order messages.

17

Init(pp, skP , pkP ,P) :
1 : id← P
2 : k←$ IKA(pp, skP , pkP)

3 : (kroot, kCKA)← KSM(k,⊥)
4 : σroot ← P-Init(kroot)

5 : (σroot, (kSAS , kFS))← P-Up(σroot,⊥)
6 : v[·],w[·]← ⊥
7 : if id = A then

8 : v[0]← FS-Init-R(kFS)

9 : else

10 : v[0]← FS-Init-S(kFS)

11 : w[0]← SAS-EA-Init(kSAS)

12 : γ ← CKA-Init-A(kCKA)

13 : Tcur ← ⊥
14 : lprv, tcur ← 0

Send(ad, pt) :

1 : if tcur is even then

2 : lprv ← FS-Stop(v[tcur − 1])

3 : tcur ← tcur + 1

4 : (γ,Tcur, I)← CKA-S(γ)

5 : (σ, (kFS , kSAS))← P-Up(σ, I)

6 : v[tcur]← FS-Init-S(kFS)

7 : w[tcur],w[tcur − 1].R

8 : ← SAS-EA-Send(kSAS)

9 : drc← (w[tcur − 2].d,w[tcur − 1].R,

10 : w[tcur].c)

11 : h← (tcur,Tcur, lprv, drc)

12 : a← (ad, h)

13 : (v[tcur], e)← FS-Send(v[tcur], a, pt)

14 : ct← (h, e)

15 : return ct

Receive(ad, ct) :

1 : (h, e)← ct

2 : (t,T, l, drc)← h

3 : req t even and t ≤ tcur + 1

4 : if t = tcur + 1 then

5 : tcur ← tcur + 1

6 : FS-Max(v[t− 2], l)

7 : (γ, I)← CKA-R(γ,T)

8 : (σ, (kFS , kSAS))← P-Up(σ, I)

9 : v[t]← FS-Init-R(kFS)

10 : w[t]← SAS-EA-Recv(kSAS , drc,

11 : w[t− 2],w[t− 1])

12 : a← (ad, h)

13 : (v[t], i, pt)← FS-Recv(v[t], a, e)

14 : if pt = ⊥ then

15 : error

16 : return (acc, pt, t, i)

AuthSend(stP)

1 : t← stP .t− 2

2 : SAS← stP .w[t].SAS

3 : return (t,SAS)

AuthReceive(stP , at)

1 : (t,SAS)← at

2 : SAS′ ← stP .w[t].SAS

3 : return SAS = SAS′

Figure 8: ARC scheme

Receiving messages. The Receive procedure handles the reception of
messages. It also gets the associated data directly as input, as explained

18

before. The drc variable is used only at the reception of a new epochs
message. This is done in order to avoid changing each time receiving a
message. Note that if the decryption of the ciphertext fails, an error is
returned. In that case, the current state of the party receiving is rolled back
to what it was before the function call. We do not make it explicit but this
is what is captured by the acc variable, that tells if the decryption has been
accepted or not.

Authenticating epochs. The algorithms AuthSend and AuthReceive are
used to send and receive the computed SAS from the internal state of a
party, for an epoch, through the out-of-band authenticated channel. As
soon as an SAS is verified, one can delete all the previous ones as it au-
thenticates the discussion until that specific epoch. This procedures can be
easily implemented by just getting the SAS from memory and outputting it
concatenated with its corresponding epoch number. Then receiving would
compare the received SAS with the one in memory and output the result of
this comparison. As one can imagine, in the case of receiving an SAS that
does not match the stored one, this would then trigger some alert mech-
anism. Note that the third message of the SAS containing the decommit
value may not have been received by the party at the time of receiving the
SAS but in this case we just reject the SAS for simplicity.

5.4 Security of the scheme

We present some intuition about why the Auth security should hold. First of
all, recall that the so-called ”authentication keys” AKi are derived one after
the other using the asymmetric ratchet. By constriction, this is done by the
mean of a secure PRF-PRNG. As they are the product of the initial key
agreement, authenticating those keys would reflect authenticating the long-
term key material used in that initial key exchange. This authentication is
done through the SAS-EA mechanism. Intuitively, if there is no collision
on the PRF-PRNG output, then the AKs will all be different and any
disagreement between the parties will be detected assuming the SAS-EA
is secure.8 Thus, if the SAS-EA scheme can be proven secure, then the
Auth security game defined can be reduced to the SAS-EA security game.
Thus our ARC scheme would be proven to be secure. Properly defining and
formalising the SAS-EA game and the related reductions could be the work
for a continuation of this project.

8Note that we do not use the same hashing mechanism as [DH20] since it appears
unnecessary.

19

6 Conclusion

We have defined and built an authenticated ratcheted communication (ARC)
scheme. It is based on a modified version of the Signal protocol developed
by [DH20] and the SAS-based mutual message authentication defined in
[PV06]. We introduced the foundations of the Signal protocol in section 2.
In particular, we focused on the key agreement, the asymmetric ratchet of
the double ratchet protocol and the entity authentication mechanism. We
have then explained the modification of the key exchange in section 3. As
previously said this modification in the asymmetric ratchet is a foundation
for the ARC scheme. In section 4, we presented the SAS-based mutual
message authentication protocol. We then defined formally the ARC scheme
itself by the mean of a syntax, a security definition, the primitives used in
the scheme and an implementation of the scheme itself. It allows to keep all
the security guarantees of the Signal protocol, added of a simple and working
entity-authentication mechanism providing authentication of the initial key
material.

Future work. As stated in the previous section, some security proofs still
need to be formalized, particularly the SAS-EA game and its oracles. This
way, we could ensure the Auth security for our ARC scheme. One could
also think about implementation details for the SAS representation on the
authenticated channel or generalising the use of SAS-based cryptography in
other protocols.

References

[ACD19] Joël Alwen, Sandro Coretti, and Yevgeniy Dodis. The double
ratchet: Security notions, proofs, and modularization for the sig-
nal protocol. In Vincent Rijmen and Yuval Ishai, editors, Ad-
vances in Cryptology – EUROCRYPT 2019 - 38th Annual Inter-
national Conference on the Theory and Applications of Crypto-
graphic Techniques, Proceedings, Lecture Notes in Computer Sci-
ence (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), pages 129–158. Springer
Verlag, 2019.

[BSJ+17] Mihir Bellare, Asha Camper Singh, Joseph Jaeger, Maya Nyayap-
ati, and Igors Stepanovs. Ratcheted encryption and key exchange:
The security of messaging. In Jonathan Katz and Hovav Shacham,
editors, Advances in Cryptology – CRYPTO 2017, pages 619–650,
Cham, 2017. Springer International Publishing.

20

[CDV21] Andrea Caforio, F. Betül Durak, and Serge Vaudenay. Beyond se-
curity and efficiency: On-demand ratcheting with security aware-
ness. In Juan A. Garay, editor, Public-Key Cryptography – PKC
2021, pages 649–677, Cham, 2021. Springer International Pub-
lishing.

[DH20] Benjamin Dowling and Britta Hale. There can be no compromise:
The necessity of ratcheted authentication in secure messaging.
Cryptology ePrint Archive, Report 2020/541, 2020. https://ia.
cr/2020/541.

[Mar16] Moxie Marlinspike. Safety number updates. Sig-
nal’s blog, Nov 2016. https://www.signal.org/blog/

safety-number-updates/.

[MP16] Moxie Marlinspike and Trevor Perrin. The x3dh key agree-
ment protocol. Open Whisper Systems, 283, 2016. https:

//www.signal.org/docs/specifications/x3dh/.

[PM16] Trevor Perrin and Moxie Marlinspike. The double ratchet al-
gorithm. GitHub wiki, 2016. https://www.signal.org/docs/

specifications/doubleratchet/.

[PV06] Sylvain Pasini and Serge Vaudenay. Sas-based authenticated key
agreement. In Moti Yung, Yevgeniy Dodis, Aggelos Kiayias, and
Tal Malkin, editors, Public Key Cryptography - PKC 2006, pages
395–409, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

[Vau05] Serge Vaudenay. Secure communications over insecure channels
based on short authenticated strings. In Victor Shoup, editor,
Advances in Cryptology – CRYPTO 2005, pages 309–326, Berlin,
Heidelberg, 2005. Springer Berlin Heidelberg.

21

https://ia.cr/2020/541
https://ia.cr/2020/541
https://www.signal.org/blog/safety-number-updates/
https://www.signal.org/blog/safety-number-updates/
https://www.signal.org/docs/specifications/x3dh/
https://www.signal.org/docs/specifications/x3dh/
https://www.signal.org/docs/specifications/doubleratchet/
https://www.signal.org/docs/specifications/doubleratchet/

	Introduction
	Signal
	The X3DH key agreement protocol
	The double ratchet algorithm
	Entity authentication mechanism

	Modified Signal key exchange and authentication
	SAS-based authentication
	The ARC scheme
	Syntax and security
	Primitive definitions
	The scheme
	Security of the scheme

	Conclusion

