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1 Introduction

The following work describes an operator useful to measure the gain of informa-
tion obtained from independent samples. First we need to define this operator
and that is what we do in part 2. We also found some interesting properties that
we claimed and proved. Then we discuss and try to find an inverse operator.
In the end, we try to describe a decomposition on random variables in order to
apply this operator not only on independent samples but any set of samples.
We finish our study by giving some leads on what can be done to continue some
research about this operator.

2 Definition of the
.
⊗ operator

Let X be a random variable taking values in alphabet X = {x1, . . . , xn}. We
denote by PX the n dimensional vector [P[X = x1], . . . ,P[X = xn]]T that be-
longs to the simplex S = {p ∈ [0, 1]n :

∑n
i=1 pi = 1,∀i, pi ≥ 0}.

Fix PX = p ∈ S. Let U be a random variable taking value in {u1, . . . , umu
}

with probabilities P[U = ui] = αi ,
∑mu

i=1 αi = 1. Let V be defined in the same
way as U taking values in {v1, . . . , vmv

} and probabilities βj , 1 ≤ j ≤ mv. Let
us define PX|U ∼ F with support {f1, . . . , fmu} where fi ∈ S and

∑mu

i=1 fiαi = p.
In the same way, let PX|V ∼ G with support {g1, . . . ,gmv

} where gj ∈ S and∑mv

j=1 gjβj = p. Here we assumed that |SU | = |SF | (and same for V and G)
for simplicity but the map from symbols of U to PX|U (respectively V to PX|V )
is not, in general, injective. A bit of intuition about PX|U : it is a random
vector and conditioned on U = ui, then PX|U = PX|U=ui

= fi. For this reason,
PX|U = E[δX |U ] with δX = [0 0 . . . 1 . . . 0]T with the 1 at position x.

The main goal is now to define an operator
.
⊗ s.t.

PX|U,V ∼ F
.
⊗ G

In order to do that, we describe the support of F
.
⊗ G and its probability

distribution. We make here an important assumption : U and V are independent
knowing X.

Support of F
.
⊗ G :

We start by computing

P[X = xi|U = uj , V = vk] =
P[X = xi, U = uj , V = vk]∑n
l=1 P[X = xl, U = uj , V = vk]
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Moreover,

P[X = xi, U = uj , V = vk]

= P[X = xi|U = uj ] · P[U = uj ] · P[V = vk|X = xi, U = uj ]

= P[X = xi|U = uj ] · P[U = uj ] · P[V = vk|X = xi]

= P[U = uj ] · P[V = vk] · P[X = xi|U = uj ] · P[X = xi|V = vk]

P[X = xi]

= P[U = uj ] · P[V = vk] · P[X = xi|U = uj ] · P[X = xi|V = vk]

P[X = xi]

= αjβk ·
fj,i · gk,i

pi

Thus,

P[X = xi|U = uj , V = vk] =
1∑n

l=1
fj,lgk,l

pl

· fj,igk,i
pi

This being computed, we can now state that:

PX|U=uj ,V=vk =
1∑n

l=1
fj,lgk,l

pl

·


fj,1gk,1

p1

...
fj,ngk,n

pn


With this being done, we have computed the support of F

.
⊗ G which namely

is :

S
F

.
⊗G =

 1∑n
l=1

fj,lgk,l

pl

·


fj,1gk,1

p1

...
fj,ngk,n

pn




1≤j≤mu,1≤k≤mv

Probabilities associated to the support :
It remains now to compute the probabilities associated to each of those vec-

tors. In order to do so, we compute :

P[U = uj , V = vk]

= P[V = vk|U = uj ] · P[U = uj ]

=

n∑
i=1

P[V = vk|X = xi]P[X = xi|U = uj ] · P[U = uj ]

=

n∑
i=1

P[X = xi|U = uj ]P[X = xi|V = vk]

P[X = xi]
· P[U = uj ]P[V = vk]

= αjβk

n∑
i=1

fj,igk,i
pi
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Note : it is in fact possible that during the computation of F
.
⊗ G several points

collapse to the same point. In this case, we just take the sum of the probabilities
associated to that point.

Conclusion of what we have done so far :
Given PX = p, PX|U ∼ F and PX|V ∼ G both averaging to p such that U

and V are independent knowing X, we defined an operator
.
⊗ :

• PX|U,V ∼ F
.
⊗ G

• S
F

.
⊗G =

 1∑n
l=1

fj,lgk,l
pl

·


fj,1gk,1

p1

...
fj,ngk,n

pn




1≤j≤mu,1≤k≤mv

• ∀yjk ∈ SF .
⊗G, P[PX|U,V = yjk] = αjβk

∑n
i=1

fj,igk,i

pi

which will give us the behaviour PX|U,V in terms of PX|U and PX|V when U
and V are independent knowing X.
In addition of that, we can state the following claims :

Claim 1 F
.
⊗ G is a probability distribution

mu∑
j=1

mv∑
k=1

αjβk

n∑
i=1

fj,igk,i
pi

=

n∑
i=1

1

pi

mu∑
j=1

mv∑
k=1

αjβkfj,igk,i

=

n∑
i=1

1

pi

mu∑
j=1

αjfj,i

mv∑
k=1

βkgk,i

=

n∑
i=1

1

pi
· pi · pi

=

n∑
i=1

pi

= 1
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Claim 2 F
.
⊗ G averages to p

mu∑
j=1

mv∑
k=1

αjβk

n∑
i=1

fj,igk,i
pi

· 1∑n
l=1

fj,lgk,l

pl

·


fj,1gk,1

p1

...
fj,ngk,n

pn


=

mu∑
j=1

mv∑
k=1

αjβk


fj,1gk,1

p1

...
fj,ngk,n

pn


=


∑mu

j=1

∑mv

k=1 αjβk
fj,1gk,1

p1

...∑mu

j=1

∑mv

k=1 αjβk
fj,ngk,n

pn


=

 1
p1

∑mu

j=1 αjfj,1
∑mv

k=1 βkgk,1
...

1
pn

∑mu

j=1 αjfj,n
∑mv

k=1 βkgk,n


=

 1
p1
· p1 · p1
...

1
pn
· pn · pn


=

p1...
pn


= p

Claim 3 F
.
⊗ G = G

.
⊗ F (commutative)

Intuitively we have PX|U,V = PX|V,U . One can check that applying the definition
the other way leads in fact to the same result.

Claim 4 (F
.
⊗ G)

.
⊗ H = F

.
⊗ (G

.
⊗ H) (associative)

Let PX|U ∼ F , PX|V ∼ G, PX|W ∼ H having supports {f1, . . . , fr}, {g1, . . . ,gs},
{h1, . . . ,ht}, with their associated probabilities α1, . . . , αr, β1, . . . , βs, γ1, . . . , γt
respectively, all centered in PX and following the assumption that U, V,W are
fully independent knowing X.
By the previous definition, F

.
⊗ G exists with support : 1∑n

l=1
fi,lgj,l
pl

·


fi,1gj,1
p1

...
fi,ngj,n
pn




1≤i≤r,1≤j≤s

= {fij}1≤i≤r,1≤j≤s
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As F
.
⊗ G is also centered in PX , we can compute (F

.
⊗ G)

.
⊗ H. We find its

support :

S
(F

.
⊗G)

.
⊗H =

 1∑n
l=1

fij,lhk,l

pl

·


fij,1hk,1

p1

...
fij,nhk,n

pn




1≤i≤r,1≤j≤s,1≤k≤t

Similarly, we compute the supports of G
.
⊗ H and F

.
⊗ (G

.
⊗ H) :

S
G

.
⊗H =

 1∑n
l=1

gj,lhk,l

pl

·


gj,1hk,1

p1

...
gj,nhk,n

pn




1≤j≤s,1≤k≤t

=
{
gjk
}
1≤j≤s,1≤k≤t

S
F

.
⊗(G

.
⊗H)

=

 1∑n
l=1

gjk,lfi,l
pl

·


gjk,1fi,1

p1

...
gjk,nfi,n

pn




1≤i≤r,1≤j≤s,1≤k≤t

=


∑n
m1=1

gj,m1hk,m1

pm1∑n
l=1

∑n
m2=1

gj,m2
hk,m2

pm2
· gj,lhk,l

pl
· fi,lpl


gj,1hk,1

p1
· fi,1p1

. . .
gj,nhk,n

pn
· fi,npn




=

 1∑n
l=1

fi,lgj,lhk,l

p2l


fi,1gj,1hk,1

p21
. . .

fi,ngj,nhk,n

p2n




1≤i≤r,1≤j≤s,1≤k≤t

=


∑n
m1=1

fi,m1
gj,m1

pm1∑n
l=1

∑n
m2=1

fi,m2
gj,m2

pm2
· fi,lgj,lpl

· hk,l

pl


fi,1gj,1
p1

· hk,1

p1

. . .
fi,ngj,n
pn

· hk,n

pn




=

 1∑n
l=1

fij,lhk,l

pl

·


fij,1hk,1

p1

...
fij,nhk,n

pn




1≤i≤r,1≤j≤s,1≤k≤t

= S
(F

.
⊗G)

.
⊗H

One can check that the probabilities given to each points of both supports
match.
Another way to look at this is if U and V are independent knowing X and if
W independent of PX|U and PX|V , then U, V,W are independent knowing X.
Thus we have

PX|(U,V ),W ∼ (F
.
⊗ G)

.
⊗ H

= PX|U,(V,W ) ∼ F
.
⊗ (G

.
⊗ H)
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Claim 5 (λF1 + (1− λ)F2)
.
⊗ G = λF1

.
⊗ G+ (1− λ)F2

.
⊗ G, λ ∈ [0, 1]

Let PX|Ui
∼ Fi, i = 1, 2, PX|V ∼ G having supports {f1, . . . , fr}, {g1, . . . ,gs},

{h1, . . . ,ht}, with their associated probabilities α1, . . . , αr, β1, . . . , βs, γ1, . . . , γt
respectively, all centered in PX , following the assumption that U1, U2, V are
independent knowing X and λ ∈ [0, 1].
Define B ∼ B(λ) so that :

PX|UB ,B ∼ λF1 + (1− λ)F2

and B independent of U1, U2, V and X. Then we have the following :

PX|(UB ,B),V ∼ (λF1 + (1− λ)F2)
.
⊗ G

= PX|(UB ,V ),B ∼ λF1

.
⊗ G+ (1− λ)F2

.
⊗ G

3 Finding an inverse operator

As we defined a kind of ”product operator”, it justifies the idea of finding an
inverse operator, a ”division operator”. We mainly focused on the following
problem :

Given PX , PX|U ∼ F1 and some distribution F , can we find F2 s.t.

F1

.
⊗ F2 = F ?

Of course this is not always feasible.

Some first attempt by an interesting example

Let X ∼ B( 1
2 ), U1, U2, U3

i.i.d.∼ B(p) and Yi = X⊕Ui, i = 1, 2, 3. We compute

PX|Y1,Y2,Y3
∼ G = F

.
⊗ F

.
⊗ F and the question is : does it exists F1 6= F

.
⊗ F

such that F1

.
⊗ F = G. We only care about the case for X = 0 as the other

case can be resolved from this one as the second coordinate from each vector
will be 1 − ”first”. To reduce notation we only use the first coordinate in all
the following supports. We have :

SF = {1− p, p}

SG =

{
(1− p)3

(1− p)3 + p3
, 1− p, p, p3

p3 + (1− p)3

}
and we have to find SF1

. The first problem arises here. We can not know
precisely on how many points F1 will be distributed. Let us assume that :

SF1
= {a, b}
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for some a and b each having probability α and β respectively. With the previous
formula, we find :

S
F1

.
⊗F = { ap

ap+ (1− a)(1− p)
,

a(1− p)
a(1− p) + (1− a)p

,

bp

bp+ (1− b)(1− p)
,

b(1− p)
b(1− p) + (1− b)p

}

We solve for a and b and we find :

a =
p2

p2 + (1− p)2

b =
(1− p)2

p2 + (1− p)2

We find the probabilities for α, β such that F1 is centered in PX . We find :

α =
1

2

β =
1

2

Here arises a second problem : we found points for F1 such that SG = S
F1

.
⊗F but

there is a mismatch regarding the probabilities. In fact here are the probabilities
associated to the points of G :

(1− p)3

(1− p)3 + p3
→ 1

2
[(1− p)3 + p3]

1− p→ 3

2
(1− p)2p

p→ 3

2
p2(1− p)

p3

(1− p)3 + p3
→ 1

2
[(1− p)3 + p3]

and here are the probabilities associated to the points of F1

.
⊗ F :

(1− p)3

(1− p)3 + p3
→ 1

2

(1− p)3 + p3

(p2 + (1− p)2)

1− p→ 1

2

(1− p)2p+ p2(1− p)
(p2 + (1− p)2)

p→ 1

2

(1− p)2p+ p2(1− p)
(p2 + (1− p)2)

p3

(1− p)3 + p3
→ 1

2

(1− p)3 + p3

(p2 + (1− p)2)

where l → r stands for ”point l has associated probability r”. As we can see,
the two distributions are not equal. Hence F1

.
⊗ F 6= G(= F

.
⊗ F

.
⊗ F ). The
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main fact why those distributions are not equal is that we looked for F1 having
two points and F

.
⊗ F has three. One thing to note is that F

.
⊗ F contains the

two points of F1 and a third point being exactly 1
2 which is the ”trivial” point

coming from PX (as reminder X ∼ B( 1
2 ) =⇒ PX =

[
1
2
1
2

]
). This may be a

coincidence coming from the big symmetry of the problem.

Second try from the same example
We tried to solve our first problem of number of points. In order to do so, we

started from the same example but this time not looking for a distribution F1

but for two distributions Fa and Fb on two points such that

Fa
.
⊗ Fb = F

.
⊗ F

.
⊗ F = G.

The intuition behind this is that in most of the cases, taking the operator
between two distributions on two points should give us a distribution of four
points. In fact F

.
⊗ F

.
⊗ F gave us four points because of the symmetry of the

example. Let us assume the following distributions for Fa and Fb :
Fa :

a1 → α1 =
1

2

a2 → α2 =
1

2
=⇒ a2 = 1− a1

Fb :

b1 → β1 =
1

2

b2 → β2 =
1

2
=⇒ b2 = 1− b1

We compute Fa
.
⊗ Fb and we find :

a1b1
a1b1 + (1− a1)(1− b1)

→ 1

2
[a1b1 + (1− a1)(1− b1)]

a1(1− b1)

a1(1− b1) + (1− a1)b1
→ 1

2
[a1(1− b1) + (1− a1)b1]

(1− a1)b1
(1− a1)b1 + a1(1− b1)

→ 1

2
[(1− a1)b1 + a1(1− b1)]

(1− a1)(1− b1)

(1− a1)(1− b1) + a1b1
→ 1

2
[(1− a1)(1− b1) + a1b1]

It remains now to solve the system from the probabilities

a1b1 + (1− a1)(1− b1) = p3 + (1− p)3

a1(1− b1) + (1− a1)b1 = 3[p2(1− p) + (1− p)2p]
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The solution to this system remains unclear because the two equations are
linearly dependent and also we cannot find another equation to solve the system.

We couldn’t find a way of describing this ”divide” operator. It is also unclear if
it exists or not.

4 Decomposition

We focused our research on another perspective. The goal was to be able to
apply the operator with any distribution. The main concern was the assumption
we made at the beginning of our research : U and V are independent knowing
X. We made two claims that remain to be proven in order to achieve what we
wanted. Let PX ∈ S and let Y1, . . . , Ym be m random variables.

Claim 6 Existence of the decomposition

∃U1, . . . , Uk, ∀i Ui has support on two points, is centered in PX and U1, . . . , Uk
are fully independent knowing X, such that

PX|Y1,...,Yn
= PX|U1,...,Uk

.

If we denote PX|Ui
∼ Fi, i = 1, . . . , k, then

PX|Y1,...,Yn
= PX|U1,...,Uk

= F1

.
⊗ F2

.
⊗ . . .

.
⊗ Fk

and we call F1

.
⊗ . . .

.
⊗ Fk the decomposition of PX|Y1,...,Yn

.

Claim 7 Uniqueness of the decomposition

The decomposition of PX|Y1,...,Yn
is unique.

As stated before, those claims remain not proven. Our intuition trying to
prove them was that claim 6 could be true and claim 7 could be false.

5 Future directions

We state here some ideas on continuing the work about the operator that we
created. For the sake of simplicity we state those ideas for PX being unidimen-
sionnal below, but they can be generalised to n dimensions.

Asymptotics
If we can compute F

.
⊗ G in an efficient way, then we can do the following
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procedure

F0 = F

Fn+1 = Fn
.
⊗ Fn.

This allows us to compute F
.
⊗ F

.
⊗ . . .

.
⊗ F with 2n combinations. This could

be efficient to study asymptotics.

Concavity
Let px ∈ [0, 1] be fixed. Let µ be a discrete probability distribution on support

Sµ, averaging to px and let p ∈ [0, 1]. We define hpx : [0, 1] → [0, 1] a function
having the following properties :

• hpx is affine on [0, px] and [px, 1]

• hpx(0) = hpx(1) = 0

• hpx(px) = 1

We also define for any distribution F the following :

F (hpx) =
∑
q∈SF

hpx(q)F (q)

Then we claim that

h
′
(p) = (p

.
⊗ µ)(hpx)

has the same properties as hpx , where the operator between a point and a
distribution follows exactly our above definition.

Inner product
Let µ and ν be two probability distributions averaging to px. Then we define

the inner product of µ and ν as

〈µ, ν〉 = (µ
.
⊗ ν)(hpx)

It is interesting to study this inner product as it gives an inner product structure
to our measure space.

Last problem
Here is a last problem that we want to explore :

Given h, is there µh such that

(p
.
⊗ µh)(hpx) = h(p), ∀p

6 Conclusion

In conclusion, we created an operator that reflects the gain of information from
independent samples. This operator has some interesting properties and there
still need some work to find new ones. It also can be easily generalised for some
continuous distribution PX .
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